精英家教网 > 高中数学 > 题目详情
已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点,且PA∥平面QBD.

⑴确定Q的位置;
⑵求二面角Q-BD-C的平面角的余弦值.
⑴当时,PA∥平面QBD;⑵二面角Q-BD-C的平面角的余弦值.

试题分析:⑴要使得PA∥平面QBD,必须使得平面QBD内有一条直线与PA平行,为了找这条直线,先作过PA与平面QBD相交的平面,只要交线与PA平行即可.⑵由于BC,BA,BP两两垂直,故可以B为坐标原点,以BC,BA,BP分别为x,y,z轴建立空间直角坐标系,然后利用空间向量进行计算.
试题解析:⑴当时,PA∥平面QBD,证明如下:
连结AC交BD于点M,
∵2CD=AB,CD∥AB,∴AM=2MC
过PA的平面PAC平面QBD=MQ,
∵PA∥平面QBD,∴AP∥MQ,∴PQ=2QC.       4分
⑵设BC=1,如图,以B为坐标原点,以BC,BA,BP分别为x,y,z轴建立空间直角坐标系O- xyz(其中点B与点O重合),则C(1,0,0),A(0,2,0),D(1,1,0),P(0,0,1).
∵PQ=2QC,∴
设平而QBD的一个法向量为

.

又平面CBD的一个法向量为
设二面角Q-BD-C的平面角为,又为锐角

∴二面角Q-BD-C的平面角的余弦值。      12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,正方体的边长为2,分别为的中点,在五棱锥中,为棱的中点,平面与棱分别交于.
(1)求证:
(2)若底面,且,求直线与平面所成角的大小,并求线段的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,已知

(1)求异面直线夹角的余弦值;
(2)求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD中,PD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=2,PD=,M为棱PB的中点.

(1)证明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,等腰梯形ABCD,AD//BC,P是平面ABCD外一点,P在平面ABCD的射影O恰在AD上,.

(1)证明:
(2)求二面角A-BP-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如下图,在四棱柱中,底面和侧面
是矩形,的中点,.
(1)求证:
(2)求证:平面
(3)若平面与平面所成的锐二面角的大小为,求线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,侧面底面,,底面是直角梯形,,,,

(1)求证:平面;
(2)设为侧棱上一点,,试确定的值,使得二面角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形是等腰梯形,.在梯形中,,且⊥平面

(1)求证:
(2)若二面角,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列结论:①若 ,,则 ; ②若,则
;   ④为非零不共线,若
非零不共线,则垂直
其中正确的为(     )
A.②③B.①②④C.④⑤D.③④

查看答案和解析>>

同步练习册答案