精英家教网 > 高中数学 > 题目详情
某工厂生产某种产品,每日的成本C(单位:元)与日产里x(单位:吨)满足函数关系式C=10000+20x,每日的销售额R(单位:元)与日产量x满足函数关系式
R=
-
1
30
x3+ax2 +290x,0<x<120
20400,x>120

已知每日的利润y=R-C,且当x=30时y=-100.
(I)求a的值;
(II)当日产量为多少吨时,毎日的利润可以达到最大,并求出最大值.
分析:(I)根据每日的利润y=R-C建立函数关系式,然后根据当x=30时y=-100可求出a的值;
(II)当0<x<120时,利用导数研究函数的单调性,从而求出函数的最大值,当x≥120时,根据一次函数的单调性求出最大值,比较可求出所求.
解答:解:(I)由题意可得:y=
-
1
30
x3+ax2 +270x-10000,0<x<120
10400-20x,x≥120

∵当x=30时y=-100
∴-100=-
1
30
×303+a×302+270×30-10000
解得 a=3
(II)当0<x<120时,y=-
1
30
×x3+3x2+270x-10000
y′=-
1
10
x2+6x+270
由y′=-
1
10
x2+6x+270=0可得:x=90或x=-30(舍)
所以当x∈(0,90)时,原函数是增函数,当x∈(90,120)时,原函数是减函数
所以当x=90时,y取最大值14300
当x≥120时,y=10400-20x≤8000
所以当日产量为90吨时,每日的利润可以达到最大值14300元.
点评:本题主要考查了分段函数的最值,以及利用导数研究函数的最值,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工厂生产某种产品,已知该产品的产量x(吨)与每吨产品的价格P(元/吨)之间的关系为P=24200-
15
x2
,且生产x吨的成本为R=50000+200x元.问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产某种产品固定成本为2000万元,并且每生产一单位产品,成本增加10万元,又知总收入k是单位产品数Q的函数,k(Q)=40Q-
120
Q2,则总利润L(Q)的最大值是
2500万元
2500万元

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产某种产品,已知该产品的月生产量x(吨)与每吨产品的价格P(元/吨)之间的关系式为P=24200-
15
x2
,且生产x吨的成本为R=50000+200x(元).
(1)求该工厂月利润L(元)关于月生产量x(吨)的函数关系式;(月利润=月收入-月成本)
(2)求该工厂每月生产多少吨产品才能使月利润达到最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产某种产品,已知该产品每吨的价格P(元)与产量x(吨)之间的关系式为 P=24200-
15
x2
,且生产x吨的成本为(50000+200x)元,则该厂利润最大时,生产的产品的吨数为
200
200

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:
x 3 4 5 6
y 2.5 3 4 4.5
据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是(  )

查看答案和解析>>

同步练习册答案