【题目】已知分别是正四面体的棱上的点,且,若,,则四面体的体积是_________.
【答案】
【解析】
由题意画出图形,设PD=x,PE=y,PF=z,由余弦定理得到关于x,y,z的方程组,求解可得x,y,z的值,然后分别求出三角形PDE的面积及F到平面PDE的高,代入棱锥体积公式得答案.
如图,
设PD=x,PE=y,PF=z,则
∵DE=2,DF=EF=,
∴由余弦定理得,x2+y2﹣2xy=4①
y2+z2﹣2yz=7②
z2+x2﹣2zx=7③
③﹣②得,x2﹣y2=xz﹣yz,
即(x+y)(x﹣y)=z(x﹣y),
∵x≠y,则z=x+y,
代入②,得x2+y2+xy=7,
又x2+y2﹣xy=4,不妨设x>y,
解得,x=,y=,z=.
则=,
F到平面PDE的距离d=.
∴VP﹣DEF=.
故答案为:.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P—ABCD中,四边形ABCD为菱形,△PAD为正三角形,且E为AD的中点,BE⊥平面PAD.
(Ⅰ)求证:平面PBC⊥平面PEB;
(Ⅱ)求平面PEB与平面PDC所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】,为两个不同的平面,,为两条不同的直线,下列命题中正确的是( )
①若,,则; ②若,,则;
③若,,,则 ④若,,,则.
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的一段图象如图所示.将函数的图象向右平移个单位长度,可得到函数的图象,且图象关于原点对称.
(1)求的解析式并求其单调递增区间;
(2)求实数的最小值,并写出此时的表达式;
(3)在(2)的条件下,设,关于的函数在区间上的最小值为-2,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:
(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x-a|-1,(a为常数).
(1)若f(x)在x∈[0,2]上的最大值为3,求实数a的值;
(2)已知g(x)=xf(x)+a-m,若存在实数a∈(-1,2],使得函数g(x)有三个零点,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com