精英家教网 > 高中数学 > 题目详情

【题目】已知分别是正四面体的棱上的点,且,若,则四面体的体积是_________.

【答案】

【解析】

由题意画出图形,设PD=x,PE=y,PF=z,由余弦定理得到关于x,y,z的方程组,求解可得x,y,z的值,然后分别求出三角形PDE的面积及F到平面PDE的高,代入棱锥体积公式得答案.

如图,

设PD=x,PE=y,PF=z,则

∵DE=2,DF=EF=

由余弦定理得,x2+y2﹣2xy=4①

y2+z2﹣2yz=7②

z2+x2﹣2zx=7③

③﹣②得,x2﹣y2=xz﹣yz,

即(x+y)(x﹣y)=z(x﹣y),

∵x≠y,则z=x+y,

代入,得x2+y2+xy=7,

又x2+y2﹣xy=4,不妨设x>y,

解得,x=,y=,z=

=

F到平面PDE的距离d=

∴VP﹣DEF=

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P—ABCD中,四边形ABCD为菱形,△PAD为正三角形,且E为AD的中点,BE⊥平面PAD.

(Ⅰ)求证:平面PBC⊥平面PEB;

(Ⅱ)求平面PEB与平面PDC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为两个不同的平面,为两条不同的直线,下列命题中正确的是( )

①若,则 ②若,则

③若,则 ④若,则.

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的一段图象如图所示.将函数的图象向右平移个单位长度,可得到函数的图象,且图象关于原点对称.

1)求的解析式并求其单调递增区间;

2)求实数的最小值,并写出此时的表达式;

3)在(2)的条件下,设,关于的函数在区间上的最小值为-2,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=|x-a|-1,(a为常数).

1)若fx)在x[02]上的最大值为3,求实数a的值;

2)已知gx=xfx+a-m,若存在实数a∈(-12],使得函数gx)有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)求证:直线是曲线的切线;

(Ⅲ)写出的一个值,使得函数有三个不同零点(只需直接写出数值)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范围.

查看答案和解析>>

同步练习册答案