精英家教网 > 高中数学 > 题目详情
8、对于四面体ABCD,有如下命题
①棱AB与CD所在的直线异面;
②过点A作四面体ABCD的高,其垂足是△BCD的三条高线的交点;
③若分别作△ABC和△ABD的边AB上的高,则这两条高所在直线异面;
④分别作三组相对棱的中点连线,所得的三条线段相交于一点,
其中正确的是(  )
分析:棱AB与CD所在的直线异面,过点A作四面体ABCD的高,其垂足不一定是△BCD的三条高线的交点,若分别作△ABC和△ABD的边AB上的高,则这两条高所在直线不一定共面,分别作三组相对棱的中点连线,所得的三条线段相交于一点.
解答:解:棱AB与CD所在的直线异面,①正确,
过点A作四面体ABCD的高,其垂足不一定是△BCD的三条高线的交点,故②不正确,
若分别作△ABC和△ABD的边AB上的高,则这两条高所在直线共面或异面,故③不正确,
分别作三组相对棱的中点连线,所得的三条线段相交于一点,故④正确,
综上可知①④两个命题正确,
故选C.
点评:本题考查空间中直线与直线的位置关系,本题解题的关键是理解对于不同的四面体,这些性质不是都成立,注意区分.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、对于四面体ABCD,下列命题正确的序号是
①④⑤

①相对棱AB与CD所在的直线异面;
②由顶点A作四面体的高,其垂足是△BCD的三条高线的交点;
③若分别作△ABC和△ABD的边AB上的高,则这两条高所在直线异面;
④分别作三组相对棱中点的连线,所得的三条线段相交于一点;
⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.

查看答案和解析>>

科目:高中数学 来源: 题型:

15、对于四面体ABCD,下列命题正确的是
①④⑤
.(写出所有正确命题的编号).
①相对棱AB与CD所在的直线是异面直线;
②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;
③若分别作△ABC和△ABD的边AB上的高,则这两条高的垂足重合;
④任何三个面的面积之和都大于第四个面的面积;
⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点.

查看答案和解析>>

科目:高中数学 来源: 题型:

17、对于四面体ABCD,下列命题正确的是
①④
.(写出所有正确命题的编号)
①相对棱AB与CD所在的直线异面
②由顶点A作四面体的高,其垂足必是△BCD的三条高线的交点
③若分别作△ABC和△ABD的边AB上的高,则这两条高所在直线必异面
④分别作三组相对棱中点的连线,所得的三条线段相交于一点.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下五个命题中,正确命题的个数是
3
3

①不共面的四点中,其中任意三点不共线;
②若a,b,c为空间中不重合的三条直线,若a⊥c,b⊥c,则a∥b;
③对于四面体ABCD,任何三个面的面积之和都大于第四个面的面积;
④对于四面体ABCD,相对棱AB 与CD 所在的直线是异面直线;
⑤各个面都是三角形的几何体是三棱锥.

查看答案和解析>>

同步练习册答案