精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M是A1B的中点.
(Ⅰ)在线段B1C1上是否存在一点N,使得MN⊥平面A1BC?若存在,找出点N的位置幷证明;若不存在,请说明理由;
(Ⅱ)求平面A1AB和平面A1BC所成角的大小.
(Ⅰ)根据题意CA、CB、CC1两两互相垂直
如图:以C为原点,CA、CB、CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系
设AC=BC=CC1=a,则A1(a,0,a),M(
a
2
a
2
a
2
)
,B(0,a,0),B1(0,a,a),A(a,0,0),C1(0,0,a),
假设在B1C1上存在一点N,使MN⊥平面A1BC,设N(0,y,a)
所以
BA1
=(a,-a,a),
CA1
=(a,0,a),
MN
=(-
a
2
,y-
a
2
a
2
)

MN
BA1
=0,
MN
CA1
=0,得:y=
a
2

∴N在线段B1C1的中点处(6分)
(Ⅱ)由(Ⅰ)知MN⊥平面A1BC,则平面A1BC的一个法向量为
n
=(1,0,-1)

取AB中点D,连接CD,易证CD⊥平面A1AB
∴可得面A1AB的一个法向量
n1
=(
1
2
1
2
,0)
(8分)
cos?
n
n1
>=
n
n1
|
n
||
n1
|
=
1
2
2
2
2
=
1
2

所以面A1AB和面A1BC所成的角为
π
3
.(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,斜三棱柱的底面是直角三角形,,点在底面内的射影恰好是的中点,且

(1)求证:平面平面;
(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面四边形ABCD的对角线AC,BD交于点O,AC⊥BD,且BA=BC=4,DA=DC=2
3
,∠ABC=60°.现沿对角线AC将三角形DAC翻折,使得平面DAC⊥平面BAC.翻折后:
(Ⅰ)证明:AC⊥BD;
(Ⅱ)记M,N分别为AB,DB的中点.①求二面角N-CM-B大小的余弦值;②求点B到平面CMN的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

二面角α-EF-β的大小为120°,A是它内部的一点AB⊥α,AC⊥β,B,C分别为垂足.
(1)求证:平面ABC⊥β;
(2)当AB=4cm,AC=6cm,求BC的长及A到EF的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果正三棱锥的侧面均为直角三角形,侧面与底面所成的角为α,则α的值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正四棱柱ABCD-A1B1C1D1中,AA1=
2
,AB=1
,E是DD1的中点.
(1)求证:AC⊥B1D;
(2)求二面角E-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2.E是CC1的中点,
(1)求锐二面角D-B1E-B的余弦值.
(2)试判断AC与面DB1E的位置关系,并说明理由.
(3)设M是棱AB上一点,若M到面DB1E的距离为
21
7
,试确定点M的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角α-l-β的大小为60°,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直二面角α-l-β的棱l上有一点A,在平面α,β内各有一条射线AB,AC与l成45°,AB?α,AC?β,则∠BAC=______.

查看答案和解析>>

同步练习册答案