精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆过点,且的离心率为.

(1)求的方程;

(2)过的顶点作两条互相垂直的直线与椭圆分别相交于两点.若的角平分线方程为,求的面积及直线的方程.

【答案】(1);(2).

【解析】试题分析:(1)根据椭圆离心率和椭圆上一点的坐标,列方程组,解方程组可求得椭圆的标准方程.(2)设出过点的直线方程,联立直线的方程和椭圆的方程,求得点的横坐标,由此得到,利用角平分线上的点到两边的距离相等建立方程,可求得斜率,由此求得三角形面积和直线方程.

试题解析:

(1)把点代入中,得,又,∴

解得

∴椭圆的方程为.

(2)设过斜率为的直线为,代入椭圆方程

,①

,②

在直线上取一点,则到直线的距离为

到直线的距离为

由已知条件,解得.

代入②得

的面积 .

由①得.

的方程为,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,ABCDA1B1C1D1是正方体,画出图中阴影部分的平面与平面ABCD的交线,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在正方体ABCD-A1B1C1D1EFPQMN分别是棱ABADDD1BB1A1B1A1D1的中点.求证

(1)直线BC1∥平面EFPQ.

(2)直线AC1⊥平面PQMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.如图在三棱锥V-ABCVO⊥平面ABCO∈CDVA=VBAD=BD则下列结论中不一定成立的是 (  )

A. AC=BC

B. VC⊥VD

C. AB⊥VC

D. SVCD·AB=SABC·VO

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 过椭圆 ()的短轴端点, 分别是圆与椭圆上任意两点且线段长度的最大值为3.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点作圆的一条切线交椭圆 两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知e为自然对数的底数,设函数,则( ).

A. k=1时,f(x)在x=1处取到极小值 B. k=1时,f(x)在x=1处取到极大值

C. k=2时,f(x)在x=1处取到极小值 D. k=2时,f(x)在x=1处取到极大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小五、小一、小节、小快、小乐五位同学站成一排,若小一不出现在首位和末位,小五、小节、小乐中有且仅有两人相邻,求能满足条件的不同排法共有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】16艘轮船的研究中船的吨位区间为[1923 246](单位)船员的人数532船员人数y关于吨位x的回归方程为=9.5+0.006 2x

(1)若两艘船的吨位相差1 000求船员平均相差的人数.

(2)估计吨位最大的船和最小的船的船员人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面是边长为的菱形, 的中点,

与平面所成角的正弦值为.

(1)在棱上求一点,使平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案