精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
1
2
AD=1,CD=
3

(Ⅰ)若点M是棱PC的中点,求证:PA∥平面BMQ;
(Ⅱ)求证:若二面角M-BQ-C为30°,试求
PM
PC
的值.
考点:二面角的平面角及求法,直线与平面平行的判定
专题:空间位置关系与距离,空间角
分析:(Ⅰ)连接AC,交BQ于N,连接MN.证明MN∥PA.利用直线与平面平行的判定定理证明PA∥平面MBQ.
(Ⅱ)以Q为原点建立空间直角坐标系. 求出平面BQC的法向量,平面MBQ法向量,利用二面角M-BQ-C为30°,求解
PM
PC
的值.
解答: 解:(Ⅰ)证明:连接AC,交BQ于N,连接MN.
∵BC∥AD且BC=
1
2
AD,即BC
.
.
AQ.
∴四边形BCQA为平行四边形,且N为AC中点,
又∵点M是棱PC的中点,∴MN∥PA.
∵MN?平面MQB,PA?平面MQB,
∴PA∥平面MBQ  …(4分)
(Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD.
∵AD∥BC,BC=
1
2
AD,Q为AD的中点,∴四边形BCDQ为平行四边形,∴CD∥BQ.
∵∠ADC=90°∴∠AQB=90°  即QB⊥AD.…(6分)
如图,以Q为原点建立空间直角坐标系. 则平面BQC的法向量为
n
=(0,0,1)
; Q(0,0,0),P(0,0,
3
)
B(0,
3
,0)
C(-1,
3
,0)

PC
=(-1,
3
,-
3
)
QP
=(0,0,
3
)

PM
=t
PC
,(0≤t≤1)

在平面MBQ中,
QB
=(0,
3
,0)
QM
=
QP
+t
PC
=(-t,
3
t,
3
-
3
t)
,…(8分)
∴平面MBQ法向量为
m
=(
3
-
3
t,0,t)
…(10分)
∵二面角M-BQ-C为30°,cos30°=
|
n
m
|
|
n
||
m
|
=
|t|
(
3
-
3
t)
2
+0+t2
=
3
2

t1=
3
4
t2=
3
2
(舍)
PM
PC
=
3
4
…(12分)
点评:本题考查直线与平面平行的判定定理以及二面角的平面角的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题“?x∈R+,lnx>0”的否定是(  )
A、?x∈R+,lnx>0
B、?x∈R+,lnx≤0
C、?x∈R+,lnx>0
D、?x∈R+,lnx≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心C在x轴上的圆过点A(2,2)和B(4,0).
(1)求圆C的方程;
(2)求过点M(4,6)且与圆C相切的直线方程;
(3)已知线段PQ的端点Q的坐标为(3,5),端点P在圆C上运动,求线段PQ的中点N的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一简单几何体ABCDE的一个面ABC内接于圆O,G、H分别是AE、BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.
(Ⅰ)证明:GH∥平面ACD;
(Ⅱ)若AC=BC=BE=2,求二面角O-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1nx一ax2+(2-a)x,试讨论函数f(x)的单凋性.

查看答案和解析>>

科目:高中数学 来源: 题型:

某专营店经销某商品,当售价不高于10元时,每天能销售100件,当价格高于10元时,每提高1元,销量减少3件,若该专营店每日费用支出为500元,用x表示该商品定价,y表示该专营店一天的净收入(除去每日的费用支出后的收入).
(1)把y表示成x的函数;
(2)试确定该商品定价为多少元时,一天的净收入最高?并求出净收入的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),过其右焦点F且与该双曲线一渐近线平行的直线分别与双曲线的右支和另一条渐近线交于A、B两点,且
FB
=2
FA
,则双曲线的离心率为(  )
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在梯形ABCD中,
AB
=2
DC
.
BC
 
.
=6,P为梯形ABCD所在平面上一点,且满足
AP
+
BP
+4
DP
=
0
DA
CB
=
.
DA
 
.
.
DP
 
.
,Q为边AD上的一个动点,则
.
PQ
 
.
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是一个直角梯形,AB∥CD,∠ABC=90°.CD=3,BC=2,AB=5,AA1=2
5

(I)若A1A=A1D,点O在线段AB上,且AO=2,A1O=4,求证:A1O⊥平面ABCD;
(II)试判断AB1与平面A1C1D是否平行,并说明理由.

查看答案和解析>>

同步练习册答案