精英家教网 > 高中数学 > 题目详情
3.$\frac{cos(α+π)•si{n}^{2}(α+3π)}{tan(α+4π)•tan(α-π)•si{n}^{3}(\frac{π}{2}+α)}$=-1.

分析 由已知条件利用三角函数诱导公式和同角三角函数间的关系式求解.

解答 解:$\frac{cos(α+π)•si{n}^{2}(α+3π)}{tan(α+4π)•tan(α-π)•si{n}^{3}(\frac{π}{2}+α)}$
=$\frac{-cosα•si{n}^{2}α}{tanα•tanα•co{s}^{3}α}$
=-$\frac{-cosα•si{n}^{2}α}{si{n}^{2}α•codα}$
=-1.
故答案为:-1.

点评 本题考查三解函数化简求值,是基础题,解题时要认真审题,注意三角函数诱导公式和同角三角函数间的关系式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知椭圆的一个顶点为A1(0,-$\sqrt{2}$),焦点在x轴上.若右焦点到直线x-y+2$\sqrt{2}$=0的距离3
(1)求椭圆的标准方程;
(2)过点M(1,1)的直线与椭圆交于A、B两点,且M点为线段AB的中点,求直线AB的方程及|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C的方程为:x2+y2-2x-4y+m=0.
(1)求m的取值范围;
(2)若圆C与直线3x+4y-6=0交于M、N两点,且|MN|=2$\sqrt{3}$,求m的值;
(3)设直线x-y-1=0与圆C交于A、B两点,是否存在实数m,使得以AB为直径的圆过原点,若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.求y=lnx在x=1处的切线方程y=x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,点A(3,0),点P在椭圆C上.求|PA|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=loga(x2-2x+3)(a>0,a≠1),当x∈[0,3]时,恒有f(x)>-1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,点E,F分别是四边形ABCD的边AD,BC的中点,AB=4,DC=6,$\overrightarrow{AB}$与$\overrightarrow{DC}$所成角是60°.
(1)若$\overrightarrow{EF}$=x$\overrightarrow{AB}$+y$\overrightarrow{DC}$,求实数x,y的值;
(2)求线段EF的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列双曲线的实轴、虚轴的长,顶点、焦点的坐标和离心率:
(1)x2-8y2=32;
(2)9x2-y2=81;
(3)x2-y2=-4;
(4)$\frac{{x}^{2}}{49}$-$\frac{{y}^{2}}{25}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.幂函数f(x)=(t3-t+1)x${\;}^{\frac{7+3t-2{t}^{2}}{5}}$是偶函数,且在(0,+∞)上为增函数,求函数解析式.

查看答案和解析>>

同步练习册答案