精英家教网 > 高中数学 > 题目详情

【题目】某学生在假期进行某种小商品的推销,他利用所学知识进行了市场调查,发现这种商品当天的市场价格与他的进货量(件)加上20成反比.已知这种商品每件进价为2元.他进100件这种商品时,当天卖完,利润为100元.若每天的商品都能卖完,求这个学生一天的最大利润是多少?获得最大利润时每天的进货量是多少件?

【答案】解:由题意,设市场价格y元,他的进货量为x件,则y=
∵这种商品每件进价为2元.他进100件这种商品时,当天卖完,利润为100元,
∴100=( ﹣2)×100,∴k=360,
∴利润L=( ﹣2)x,
设x+20=t(t≥20),则L=400﹣( +2t)≤400﹣240=160,
当且仅当 =2t,即t=60,x=40时,最大利润是160元
【解析】根据这种商品当天的市场价格与他的进货量(件)加上20成反比,这种商品每件进价为2元.他进100件这种商品时,当天卖完,利润为100元,求出比例系数,可得利润函数,再换元,利用基本不等式,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(lnx﹣ax).
(1)a= 时,求f(x)在点(1,f(1))处的切线方程;
(2)若f(x)存在两个不同的极值x1 , x2 , 求a的取值范围;
(3)在(2)的条件下,求f(x)在(0,a]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣x
(1)求f(x)的解析式;
(2)画出f(x)的图象;
(3)若方程f(x)=k有4个解,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧棱垂直于底面, 是棱的中点.

证明:平面⊥平面

(Ⅱ)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选择意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果整理成条形图如下.

上图中,已知课程为人文类课程,课程为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取的学生作为研究样本组(以下简称“组M”).

(Ⅰ)在“组M”中,选择人文类课程和自然科学类课程的人数各有多少?

(Ⅱ)为参加某地举办的自然科学营活动,从“组M”所有选择自然科学类课程的同学中随机抽取4名同学前往,其中选择课程F或课程H的同学参加本次活动,费用为每人1500元,选择课程G的同学参加,费用为每人2000元.

(ⅰ)设随机变量表示选出的4名同学中选择课程的人数,求随机变量的分布列;

(ⅱ)设随机变量表示选出的4名同学参加科学营的费用总和,求随机变量的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,点为椭圆上一点. 的重心为,内心为,且,则该椭圆的离心率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x≠0).
(1)证明函数f(x)为奇函数;
(2)判断函数f(x)在[1,+∞)上的单调性,并说明理由;
(3)若x∈[﹣2,﹣3],求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为1,E在CD延长线上,且DE=CD.动点P从点A出发沿正方形ABCD的边按逆进针方向运动一周回到A点,其中 ,则下列命题正确的是 . (填上所有正确命题的序号)
①当点P为AD中点时,λ+μ=1;
②λ+μ的最大值为3;
③若y为给定的正数,则一存在向量 和实数x,使 =x +y

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点,其中为常数, 为自然对数的底数.

(1)求实数的取值范围;

(2)证明: .

查看答案和解析>>

同步练习册答案