精英家教网 > 高中数学 > 题目详情
已知直线y=k(x+1)(k>0)与函数y=|sinx|的图象恰有四个公共点A(x1,y1),B(x2,y2),
C(x3,y3),D(x4,y4)其中x1<x2<x3<x4,则有(  )
A、sinx4=1B、sinx4=(x4+1)cosx4C、sinx4=kcosx4D、sinx4=(x4+1)tanx4
分析:依题意,在同一坐标系中作出直线y=k(x+1)(k>0)与函数y=|sinx|的图象,利用导数的几何意义可求得切线的斜率,从而将切点坐标代入直线方程(即切线方程)即可求得答案.
解答:解:∵直线y=k(x+1)(k>0)与函数y=|sinx|的图象恰有四个公共点,如图:
精英家教网
当x∈(π,2π)时,函数y=|sinx|=-sinx,y′=-cosx,
依题意,切点坐标为(x4,y4),
又切点处的导数值就是直线y=k(x+1)(k>0)的斜率k,即k=-cosx4
又x∈(π,2π)时,|sinx4|=-sinx4
∴y4=k(x4+1)=-cosx4(x4+1)=-sinx4
∴sinx4=(x4+1)cosx4
故选:B.
点评:本题考查正弦函数的图象,着重考查导数的几何意义的应用,考查等价转化思想与数形结合思想的综合应用,考查作图能力与分析、运算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=(  )
A、
1
3
B、
2
3
C、
2
3
D、
2
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=k(x-3)与双曲线
x2
m
-
y2
27
=1
,有如下信息:联立方程组
y=k(x-3)
x2
m
-
y2
27
=1
消去y后得到方程Ax2+Bx+C=0,分类讨论:
(1)当A=0时,该方程恒有一解;
(2)当A≠0时,△=B2-4AC≥0恒成立.在满足所提供信息的前提下,双曲线离心率的取值范围是(  )
A、[9,+∞)
B、(1,9]
C、(1,2]
D、[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=k(x-3)与双曲线
x2
m
-
y2
27
=1
恒有公共点,则双曲线离心率的取值范围(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=k(x-2)(k∈R)与双曲线
x2
m
-
y2
8
=1
,某学生作了如下变形;由
y=k(x-2)
x2
m
-
y2
8
=1
消去y后得到形如关于x的方程ax2+bx+c=0.讨论:当a=0时,该方程恒有一解;当a≠0时,b2>4ac恒成立,假设该学生的演算过程是正确的,则根据该学生的演算过程所提供的信息,求出实数m的取值范围应为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)已知直线y=k(x+1)(k>0)与抛物线C:y2=4x相交于A、B两点,F为抛物线C的焦点,若|FA|=2|FB|,则k=(  )

查看答案和解析>>

同步练习册答案