(本小题满分12分)已知数列的前n项和满足(>0,且)。数列满足
(I)求数列的通项。
(II)若对一切都有,求的取值范围。
(1) (2)或
解析试题分析:解:(1)由题意可知当时,………………………………2分
当时, (1)
(2)
用(1)式减去(2)式得:
所以数列是等比数列 所以)…………………………6分
(2)因为所以
当对一切都有 即有
(1)当有当对一切都成立所以……9分
(2)当 有当对一切都成立所以有 ………………………………………………11分
综合以上可知或………………………………12分
考点:本试题考查的数列的通项公式,以及单调性性质。
点评:对于数列的通项公式的求解,一般可以通过前n项和与通项公式的关系来解得,也可以利用递推关系来构造特殊的等差或者等比数列来求解。而对于数列的单调性的证明,一般只能用定义法来说明,进而得到参数的范围,属于中档题。
科目:高中数学 来源: 题型:解答题
设各项均为正实数的数列的前项和为,且满足().
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列的通项公式为(),若,,()成等差数列,求和的值;
(Ⅲ)证明:存在无穷多个三边成等比数列且互不相似的三角形,其三边长为数列中的三项,,.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题12分) 正项数列{an}满足a1=2,点An()在双曲线y2-x2=1上,点()在直线y=-x+1上,其中Tn是数列{bn}的前n项和。
①求数列{an}、{bn}的通项公式;
②设Cn=anbn,证明 Cn+1<Cn
③若m-7anbn>0恒成立,求正整数m的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)数列中,,
(1)求证:时,是等比数列,并求通项公式。
(2)设,, 求:数列的前n项的和。
(3)设 、 、 。记 ,数列的前n项和。证明: 。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com