精英家教网 > 高中数学 > 题目详情
5.运行以下程序框图,若输入的$x∈[{-\frac{π}{2},\frac{π}{2}}]$,则输出的y的范围是(  )
A.[-1,1]B.[-1,0]C.[0,1]D.(0,1]

分析 根据x的范围,分别求出对于的y=cosx和y=sinx的范围,取补集即可.

解答 解:x∈[-$\frac{π}{2}$,0]时,y=cosx,
故y=cosx∈[0,1],
x∈(0,$\frac{π}{2}$],y=sinx,
故y=sinx∈(0,1],
故选:C.

点评 题主要考察了程序框图和算法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知直线mx+ny-2=0(mn>0)过点(1,1),则$\frac{1}{m}$+$\frac{1}{n}$有(  )
A.最小值4B.最大值4C.最小值2D.最大值2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=x3-$\frac{3}{2}$(a+1)x2+3ax+4,其中a∈R.
(1)若f(x)在x=2处取得极值,求常数a的值;
(2)若f(x)在(-∞,0)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{{{2^x}+1}}{{{2^x}-1}}$.
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并证明;
(3)若f(a)=3,求f(-a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合A={y|y=2x},B={x|x2-2x-3>0,x∈R},那么A∩B=(  )
A.(0,3]B.[-1,3]C.(3,+∞)D.(-1,0)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)=x2-2bx+a,满足f(x)=f(2-x),且方程f(x)-$\frac{3}{4}$a=0有两个相等的实根.
(1)求函数f(x)的 解析式.
(2)当x∈[t,t+1](t>0)时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在梯形ABCD中AB∥CD,AD=CD=CB=2,∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=2.
(Ⅰ)求证:BC⊥平面ACFE;
(Ⅱ)求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=ax3+bx2+cx-34(a,b,c∈R)的导函数为f′(x),若不等式f′(x)≤0的解集为{x|-2≤x≤3},且f(x)的极小值等于-196,则a的值是(  )
A.-$\frac{81}{22}$B.$\frac{1}{3}$C.5D..4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知一扇形的弧所对的圆心角为60°,半径r=20cm,则扇形的周长为40+$\frac{20}{3}$πcm.

查看答案和解析>>

同步练习册答案