精英家教网 > 高中数学 > 题目详情
如图,已知AB是半圆O的直径,AB=8,M,N,P是将半圆圆周四等分的三个分点,从A,B,M,N,P这5个点中任取3个点,则这3个点组成直角三角形的概率为(  )
A、
7
10
B、
1
2
C、
3
10
D、
1
10
考点:列举法计算基本事件数及事件发生的概率
专题:概率与统计
分析:这是一个古典概型问题,我们可以列出从A、B、M、N、P这5个点中任取3个点,可能组成的所有三角形的个数,然后列出其中是直角三角形的个数,代入古典概型公式即可求出答案.
解答: 解:从A、B、M、N、P这5个点中任取3个点,一共可以组成10个三角形:ABM、ABN、ABP、AMN、AMP、ANP、BMN、BMP、BNP、MNP,其中是直角三角形的只有ABM、ABN、ABP3个,所以这3个点组成直角三角形的概率P=
3
10

故选:C.
点评:本题考查古典概型的概率问题,掌握古典概型的计算步骤和计算公式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆的方程式x2+y2=36,记过点P(1,2)的最长弦和最短弦分别为AB、CD,则直线AB、CD的斜率之和等于(  )
A、-1
B、
3
2
C、1
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

点M在圆心为C1的方程x2+y2+6x-2y+1=0上,点N在圆心为C2的方程x2+y2+2x+4y+1=0上,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

从圆(x-1)2+y2=1外一点P(2,4)引这个圆的切线,则此切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线E:y2=2px(p>0)的焦点F的直线l交E于A、B两点,由点A、B作抛物线准线m的垂线,垂足分别为点D、C,向四边形ABCD内部随机投一点,则该点落在△CFD内部的概率的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

班级需要在甲、乙、丙三位同学中随机的抽取两位参加一项活动,则正好抽到的是甲乙的概率是(  )
A、
1
2
B、
1
5
C、
1
3
D、
4
15

查看答案和解析>>

科目:高中数学 来源: 题型:

若用m,n表示两条不同的直线,用α表示一个平面,则下列命题正确的是(  )
A、若m∥n,n?α,则m∥α
B、若m∥α,n?α,则m∥n
C、若m⊥n,n?α,则m⊥α
D、若m⊥α,n?α,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:

若对任意一点O和不共线的三点A、B、C有
OP
=x
OA
+y
OB
+z
OC
,则x+y+z=1是四点P、A、B、C共面的(  )
A、必要不充分条件
B、充分不必要条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在半径为1的半圆中,作如图所示的等腰梯形ABCD,CE垂直下底AD于E,设DE=x(0<x<1),CE=h,梯形ABCD的周长为L.
(1)求h关于x的函数解析式,并指出定义域;
(2)试写出L与关于x的函数解析式,并求周长L的最大值.

查看答案和解析>>

同步练习册答案