精英家教网 > 高中数学 > 题目详情
6.“m>-2”是“函数f(x)=log2(2x+m)的图象与直线x=-1有交点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 “函数f(x)=log2(2x+m)的图象与直线x=-1有交点”即x=-1时,函数的解析式有意义,即真数大于0,求出相应的m的范围,进而结合充要条件的定义,可得答案.

解答 解:“函数f(x)=log2(2x+m)的图象与直线x=-1有交点”?“-2+m>0“?“m>2“,
∵{m|m>-2}?{m|m>2},
故“m>-2”是“函数f(x)=log2(2x+m)的图象与直线x=-1有交点”的必要不充分条件;
故选:B.

点评 本题考查的知识点是对数函数的图象和性质,充要条件的定义,其中将“函数f(x)=log2(2x+m)的图象与直线x=-1有交点”转化为等价的m的取值范围,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.360和504的最大公约数是72.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥S-ABCD中,底面ABCD为菱形,侧面SBC⊥底面ABCD,已知∠ABC=60°,AB=SB=SC=2.
(1)证明:BC⊥SA;
(2)求直线SD与平面SAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是(  )
A.f(-2),0B.0,2C.f(-2),2D.f(2),2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知焦点在x轴上的双曲线C:$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1的一个焦点F到其中一条渐近线的距离2,则n的值为(  )
A.2B.$\sqrt{2}$C.4D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设3x=4y=6z=t>1.求证:$\frac{1}{z}$$-\frac{1}{x}$=$\frac{1}{2y}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设M={0,1},N={11-a,1ga,2a,a},是否存在实数a,使得M∩N={1}?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.化简:a${\;}^{\frac{1}{3}}$+(a${\;}^{\frac{1}{3}}$-2b${\;}^{\frac{1}{2}}$)÷(a${\;}^{-\frac{2}{3}}$-$\frac{2\root{3}{b}}{a}$)×$\frac{\sqrt{a•\root{3}{{a}^{2}}}}{\root{5}{\sqrt{a}•\root{3}{a}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\sqrt{4-{x}^{2}}$-$\frac{2}{lg(x+1)}$的定义域为(  )
A.[-2,0)∪(0,2]B.[-2,2]C.(-1,2]D.(-1,0)∪(0,2]

查看答案和解析>>

同步练习册答案