精英家教网 > 高中数学 > 题目详情

(本题满分14分)

  如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F。

  (I)证明 平面

  (II)证明平面EFD;

  (III)求二面角的大小。

 

【答案】

 

方法一:

  (I)证明:连结AC,AC交BD于O。连结EO。

  底面ABCD是正方形,点O是AC的中点

  在中,EO是中位线,

  而平面EDB且平面EDB,

  所以,平面EDB。

 (II)证明:底在ABCD且底面ABCD,

   ①   同样由底面ABCD,得

  底面ABCD是正方形,有平面PDC

  而平面PDC, ②     ………………………………6分

  由①和②推得平面PBC  而平面PBC,

  又,所以平面EFD

(III)解:由(II)知,,故是二面角的平面角

  由(II)知, 设正方形ABCD的边长为,则

  中,

    在中,

   所以,二面角的大小为

 

  方法二:如图所示建立空间直角坐标系,D为坐标原点。设

  (I)证明:连结AC,AC交BD于G。连结EG。 依题意得

  底面ABCD是正方形, 是此正方形的中心,  故点G的坐标为

  

  。这表明

  而平面EDB且平面EDB,平面EDB。

 

  (II)证明:依题意得。又

   

  由已知,且所以平面EFD。

 

  (III)解:设点F的坐标为

  

  从而所以

  

  由条件知,

  解得

  点F的坐标为

  

  

  即,故是二面角的平面角。

  

  

 

 

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案