【题目】已知函数,函数g(x)=-2x+3.
(1)当a=2时,求f(x)的极值;
(2)讨论函数的单调性;
(3)若-2≤a≤-1,对任意x1,x2∈[1,2],不等式|f(x1)-f(x2)|≤t|g(x1)-g(x2)|恒成立,求实数t的最小值.
【答案】(1)f(x)极大值=f(1)=0,无极小值
(2)当a≤0时,F(x)在(0,+∞)单调递增;当a>0时,F(x)在单调递增,在单调递减
(3).
【解析】
(1)当a=2时,利用导数求得函数 的单调区间,进而得到极值.
(2)求得,分a≤0和a>0,两种情况讨论,即可得出函数的单调区间;
(3)把不等式转化为f(x2)-f(x1)≤t[g(x1)-g(x2)],得到f(x2)+tg(x2)≤f(x1)+tg(x1)对任意-2≤a≤-1,1≤x1≤x2≤2恒成立,令,得到h(x)在[1,2]递减,求得 对任意a∈[-2,-1],x∈[1,2]恒成立,进而转化变量只需要研究,即可求得t的取值范围.
(1)由题意,当a=2时,函数f(x)=lnx-x2+x,
则.
易知f(x)在(0,1)递增,(1,+∞)递减,
所以函数f(x)极大值为,无极小值.
(2)由函数,
则.
①a≤0时,>0,恒成立,∴F(x)在(0,+∞)单调递增;
②当a>0,由>0得,<0得,
所以F(x)在单调递增,在单调递减.
综上:当a≤0时,F(x)在(0,+∞)单调递增;
当a>0时,F(x)在单调递增,在单调递减.
(3)由题知t≥0,.
当-2≤a≤-1时,f′(x)>0,f(x)在(0,+∞)单调递增,不妨设1≤x1≤x2≤2,
又g(x)单调递减,∴不等式等价于f(x2)-f(x1)≤t[g(x1)-g(x2)].
即f(x2)+tg(x2)≤f(x1)+tg(x1)对任意-2≤a≤-1,1≤x1≤x2≤2恒成立,
记,则h(x)在[1,2]递减.
对任意a∈[-2,-1],x∈[1,2]恒成立.
令.
则在[1,2]上恒成立,
则,
而在[1,2]单调递增,∴,所以.
科目:高中数学 来源: 题型:
【题目】设,若无穷数列满足:对所有整数,都成立,则称“-折叠数列”.
(1)求所有的实数,使得通项公式为的数列是-折叠数列;
(2)给定常数,是否存在数列,使得对所有,都是-折叠数列,且的各项中恰有个不同的值?证明你的结论;
(3)设递增数列满足.已知如果对所有,都是-折叠数列,则的各项中至多只有个不同的值,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线,圆,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(1)求的极坐标方程;
(2)若直线的极坐标方程为,设的交点为A,B,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的上下两个焦点分别为,过点与轴垂直的直线交椭圆于两点,的面积为,椭圆的长轴长是短轴长的倍.
(1)求椭圆的标准方程;
(2)已知为坐标原点,直线与轴交于点,与椭园交于两个不同的点,若存在实数,使得,求的取值范围,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中真命题是
A. 同垂直于一直线的两条直线互相平行
B. 底面各边相等,侧面都是矩形的四棱柱是正四棱柱
C. 过空间任一点与两条异面直线都垂直的直线有且只有一条
D. 过球面上任意两点的大圆有且只有一个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、是定义在实数集上的实值函数,如果存在,使得对任何,都有,那么称比高兴,如果对任何,都存在,使得,那么称比幸运,对于实数和上述函数,定义.
(1)①,,判断是否比高兴?
②,,判断是否比幸运?
(2)判断下列命题是否正确?并说明理由:
①如果比高兴,比高兴,那么比高兴;
②如果比幸运,比幸运,那么比幸运;
(3)证明:对每个函数,均存在函数,使得对任何实数,都比幸运,也比幸运.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ln(a x)+bx在点(1,f(1))处的切线是y=0;
(I)求函数f(x)的极值;
(II)当恒成立时,求实数m的取值范围(e为自然对数的底数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为为椭圆上一动点,当的面积最大时,其内切圆半径为,设过点的直线被椭圆截得线段,
当轴时,.
(1)求椭圆的标准方程;
(2)若点为椭圆的左顶点,是椭圆上异于左、右顶点的两点,设直线的斜率分别为,若,试问直线是否过定点?若过定点,求该定点的坐标;若不过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com