【题目】已知函数
若,求的单调区间;
是否存在实数a,使的最小值为0?若存在,求出a的值;若不存在,说明理由.
【答案】(I)单调增区间为,单调减区间为;(II)存在实数,使的最小值为0.
【解析】
根据代入函数表达式,解出,再代入原函数得,求出函数的定义域后,讨论真数对应的二次函数在函数定义域内的单调性,即可得函数的单调区间;先假设存在实数a,使的最小值为0,根据函数表达式可得真数恒成立,且真数t的最小值恰好是1,再结合二次函数的性质,可列出式子:,由此解出,从而得到存在a的值,使的最小值为0.
且,
可得函数
真数为
函数定义域为
令
可得:当时,t为关于x的增函数;
当时,t为关于x的减函数.
底数为
函数的单调增区间为,单调减区间为
设存在实数a,使的最小值为0,
由于底数为,可得真数恒成立,
且真数t的最小值恰好是1,
即a为正数,且当时,t值为1.
因此存在实数,使的最小值为0.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点,的坐标分别为,.直线,相交于点,且它们的斜率之积是.记点的轨迹为.
(Ⅰ)求的方程.
(Ⅱ)已知直线,分别交直线于点,,轨迹在点处的切线与线段交于点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某制造商3月生产了一批乒乓球,从中随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下:
分组 | 频数 | 频率 |
[39.95,39.97) | 10 | |
[39. 97,39.99) | 20 | |
[39.99,40.01) | 50 | |
[40.01,40.03] | 20 | |
合计 | 100 |
(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;
(Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm,试求这批球的直径误差不超过0.03 mm的概率;
(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= 为奇函数.
(1)求b的值;
(2)证明:函数f(x)在区间(1,+∞)上是减函数;
(3)解关于x的不等式f(1+x2)+f(-x2+2x-4)>0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率,抛物线的焦点恰好是椭圆的右焦点.
(1)求椭圆的标准方程;
(2)过点作两条斜率都存在的直线,设与椭圆交于两点,与椭圆交于两点,若是与的等比中项,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com