精英家教网 > 高中数学 > 题目详情
函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点(1,f(1))处的切线平行于直线y=3x+1,若函数y=f(x)在x=-2时有极值.
(1)求a,b的值;
(2)求函数f(x)的单调区间; 
(3)若函数f(x)在区间[-3,1]上的最大值为10,求f(x)在该区间上的最小值.
分析:(1)切点在切线上求出点P的坐标,然后根据曲线上过点P(1,f(1)) 的切线方程为y=3x+1,且函数y=f(x)在x=-2 时有极值得f'(1)=3,f'(-2)=0,建立不等式组,解之即可求出a,b的值;.
(2)先求出其导函数,根据导函数值大于0以及小于0即可求出函数f(x)的单调区间;
(3)先分析出何时取最大值,结合最大值为10求出c,再结合函数值即可得到f(x)在该区间上的最小值.
解答:解:(1)由题意知P(1,4),
f′(x)=3x2+2ax+b                        …(2分)
∵曲线上过点P(1,f(1)) 的切线方程平行与y=3x+1,且函数y=f(x)在x=-2 时有极值.
3+2a+b=3
12-4a+b=0
,解得 
a=2
b=-4

∴f(x)=x3+2x2-4x+c             
(2)∵f'(x)=3x2+4x-4=(3x-2)(x+2)
∴x>
2
3
,x<-2,f'(x)>0;
-2<x<
2
3
,f'(x)<0.
∴函数f(x)的单调增区间为:(-∞,-2)(
2
3
,+∞)
单调减区间为:(-2,
2
3

(3)∵函数在[-3,-2)上增,(-2,
2
3
)上减,(
2
3
,1]上增;
且f(-2)=8+c,f(1)=-1+c;f(-3)=3+c,f(
2
3
)=-
40
27
+c;
由函数f(x)在区间[-3,1]上的最大值为10,
得f(-2)=8+c=10⇒c=2,
∴f(x)在该区间上的最小值为:f(
2
3
)=
14
27
点评:本题考查导数的几何意义:导数在切点处的值是切线的斜率;考查函数单调递增对应的导函数大于等于0恒成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点.
(1)求b的值;
(2)若1是其中一个零点,求f(2)的取值范围;
(3)若a=1,g(x)=f′(x)+3x2+lnx,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•东城区一模)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为
10
10
,若x=
2
3
时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)已知函数f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0时,试求函数y=f(x)的单调递减区间;
(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B 两点的横坐标之和小于4;
(3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形,试求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3ax+b(a≠0),已知曲线y=f(x)在点(2,f(x))处在直线y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=x3+ax2-x+1的极值情况,4位同学有下列说法:甲:该函数必有2个极值;乙:该函数的极大值必大于1;丙:该函数的极小值必小于1;丁:方程f(x)=0一定有三个不等的实数根. 这四种说法中,正确的个数是(  )

查看答案和解析>>

同步练习册答案