精英家教网 > 高中数学 > 题目详情
10.某大学生从全校学生中随机选取100名统计他们的鞋码大小,得到如下数据:
鞋码 35  36 37 3839  4041 42  43 44 合计
男生 -- 3 6 8 11 12 6 7 2 55
 女生 4 6 12 9 9 2 2-- 1 45
(1)某鞋店计划采购某种款式的女鞋1000双,则其中38号鞋应有多少双?
(2)完成频率分布直方图,并估计该校学生的平均鞋码.

分析 (1)设所求女鞋的数量为x,利用比例关系求出x的值即可;
(2)根据表中数据画出频率分布直方图,计算这组数据的平均数.

解答 解:(1)设所求女鞋数量为x,
则$\frac{9}{45}$=$\frac{x}{1000}$,
解得x=200;
即1000双女鞋中,38号鞋应有200双;…6分
(2)根据表中数据画出频率分布直方图,如下

由频率分布直方图,估计该校学生的平均鞋码为
35.5×0.1+37.5×0.3+39.5×0.3+41.5×0.2+43.5×0.1=39.3…12分.

点评 本题考查了频率分布直方图的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.如图,在二面角α-l-β的棱l上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB,若二面角α-l-β的大小为$\frac{π}{3}$,AB=AC=2,BD=3,则CD=(  )
A.$\sqrt{11}$B.$\sqrt{14}$C.$2\sqrt{5}$D.$\sqrt{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则(∁UM)∪(∁UN)=(  )
A.{2,4}B.{2,3,5}C.{1,3,4,5}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)满足f(x+1)=lg(2+x)-lg(-x).
(1)求函数f(x)的解析式及定义域;
(2)解不等式f(x)<1;
(3)判断并证明f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若复数z满足z2=i,则为|z|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知p:不等式x2+mx+1<0的解集为空集,q:函数y=4x2+4(m-1)x+3无极值,若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.甲、乙两同学在本学期的7次考试中获得的成绩如茎叶图所示,两人各有一次成绩看不清楚,其中m,n∈Z,已知两位同学各自的7次成绩各不相同,但两人7次成绩的平均分相同,则两人7次成绩的中位数恰好也相同的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在区间$[{-\frac{π}{6}\;\;,\;\;\frac{π}{2}}]$上随机地取一个数x,则事件“$sinx≥\frac{1}{2}$”发生的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在几何体ABCDEFG中,面ABCD是正方形,其对角线AC于BD相交于N,DE⊥平面ABCD,DE∥AF∥BG,H是DE的中点,DE=2AF=2BG.
(Ⅰ)若点R是FH的中点,证明:NR∥平面EFC;
(Ⅱ)若正方形ABCD的边长为2,DE=2,求二面角E-FC-G的余弦值.

查看答案和解析>>

同步练习册答案