精英家教网 > 高中数学 > 题目详情

【题目】某冷饮店为了解气温变化对其营业额的影响,随机记录了该店1月份销售淡季中5天的日营业额y(单位:百元)与该地当日最低气温x(单位:℃)的数据,如下表所示:

x

3

6

7

9

10

y

12

10

8

8

7

(Ⅰ)判定y与x之间是正相关还是负相关,并求回归方程 = x+
(Ⅱ)若该地1月份某天的最低气温为6℃,预测该店当日的营业额
(参考公式: = = = ).

【答案】解:(I)由散点图知:y与x之间是负相关;

因为n=5, =7, =9, ﹣5 )=275﹣5×72=30; (xiyi﹣5 )=294﹣5×7×9=﹣21.

所以b=﹣0.7,

= =9﹣(﹣0.7)×7=13.9

故回归方程为y=﹣0.7x+13.9…(8分)

(Ⅱ)当x=6时,y=﹣0.7×6+13.9=9.7.

故预测该店当日的营业额约为970元


【解析】(Ⅰ)随着x的增加,y减小,故y与x的是负相关,该地当日最低气温x和日营业额y的平均数,得到这组数据的样本中心点,利用最小二乘法求出线性回归方程的系数,代入样本中心点求出a的值,写出线性回归方程.(Ⅱ)将x=6,即可求得该店当日的营业额.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】观察下列各式: C =40
C +C =41
C +C +C =42
C +C +C +C =43

照此规律,当n∈N*时,
C +C +C +…+C =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱 中, ,底面三角形 是边长为2的等边三角形, 的中点.

(1)求证:
(2)若直线 与平面 所成的角为 ,求三棱柱 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校夏令营有3名男同学A、B、C和3名女同学X,Y,Z,其年级情况如下表,现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).

一年级

二年级

三年级

男同学

A

B

C

女同学

X

Y

Z


(1)用表中字母列举出所有可能的结果;
(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线l的参数方程为 t为参数).若以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为 . (Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)求直线l被曲线C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.

x

3

4

5

6

y

2.5

3

4

4.5

(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个地区共有5个乡镇,共30万人,其人口比例为3∶2∶5∶2∶3,从这30万人中抽取一个300人的样本,分析某种疾病的发病率.已知这种疾病与不同的地理位置及水土有关,则应采取什么样的抽样方法?并写出具体过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,a,b,c是三个内角A,B,C的对边,关于x的不等式 的解集是空集.
(1)求角C的最大值;
(2)若 ,△ABC的面积 ,求当角C取最大值时a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣(a+2)x+x2
(1)求函数f(x)的单调区间;
(2)若对于任意a∈[4,10],x1 , x2∈[1,2],恒有| |≤ 成立,试求λ的取值范围.

查看答案和解析>>

同步练习册答案