精英家教网 > 高中数学 > 题目详情

【题目】已知,函数Fx=min{2|x1|x22ax+4a2}

其中min{pq}=

)求使得等式Fx=x22ax+4a2成立的x的取值范围;

)()求Fx)的最小值ma);

)求Fx)在区间[0,6]上的最大值Ma.

【答案】.()(.(

【解析】

试题()分别对两种情况讨论,进而可得使得等式成立的的取值范围;()()先求函数的最小值,再根据的定义可得的最小值;()分别对两种情况讨论的最大值,进而可得在区间上的最大值

试题解析:()由于,故

时,

时,

所以,使得等式成立的的取值范围为

)()设函数

所以,由的定义知,即

)当时,

时,

所以,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经过市场调查,超市中的某种小商品在过去的近40天的日销售量(单位:件)与价格(单位:元)为时间(单位:天)的函数,且日销售量近似满足,价格近似满足

(1)写出该商品的日销售额(单位:元)与时间)的函数解析式并用分段函数形式表示该解析式(日销售额=销售量商品价格);

(2)求该种商品的日销售额的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的结果为2,则输入的正整数a的可能取值的集合是(

A.{1,2,3,4,5}
B.{1,2,3,4,5,6}
C.{2,3,4,5}
D.{2,3,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知倾斜角为的直线经过点.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的普通方程;

(2)若直线与曲线有两个不同的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,DOAB是边长为2的正三角形,当一条垂直于底边OA(垂足不与OA重合)的直线x=t从左至右移动时,直线l把三角形分成两部分,记直线l左边部分的面积y

)写出函数y= ft)的解析式;

)写出函数y= ft)的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数定义域为在区间上单调递增的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数满足如下四个条件:

定义域为

③当时,

④对任意满足.

根据上述条件,求解下列问题:

的值.

应用函数单调性的定义判断并证明的单调性.

求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数是自然对数的底数).

(1)若有最小值,求的取值范围,并求出的最小值;

(2)若对任意实数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,且a≠1,则双曲线C1 ﹣y2=1与双曲线C2 ﹣x2=1的(
A.焦点相同
B.顶点相同
C.渐近线相同
D.离心率相等

查看答案和解析>>

同步练习册答案