精英家教网 > 高中数学 > 题目详情
19.在等比数列{an}中,a1=1,a4=8,则前5项和S5=31.

分析 利用等比数列的通项公式与求和公式即可得出.

解答 解:设等比数列{an}的公比为q,a1=1,a4=8,∴q3=8,解得q=2.
则前5项和S5=$\frac{{2}^{5}-1}{2-1}$=31.
故答案为:31.

点评 本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.化简:
(1)sin($\frac{π}{6}$-2π)cos($\frac{π}{4}$+π)
(2)sin($\frac{π}{4}$+$\frac{5π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx+ax.
(1)若曲线f(x)在点(1,f(1))处的切线与直线y=4x+1平行,求a的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\frac{1}{3}{f}^{'}(e)x+xlnx$(其中,e为自然对数的底数).
(Ⅰ)求f′(e);
(Ⅱ)求函数f(x)的极值;
(Ⅲ)若整数k使得f(x)>k(x-1)恒成立,求整数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.$({ax+\frac{1}{x}}){({\frac{1}{x}-2x})^5}$的展开式各项系数的和为-3,则展开式中x2的系数为-80.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow a=(4,-2)$,$\overrightarrow b=(x,1)$,若$\overrightarrow a∥\overrightarrow b$,则$|\overrightarrow a+\overrightarrow b|$=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在$\widehat{AB}$上,且OM∥AC.
(Ⅰ)求证:平面MOE∥平面PAC;
(Ⅱ)求证:平面PAC⊥平面PCB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x、y满足曲线方程x2+$\frac{1}{{y}^{2}}$=2,则x2+y2的取值范围是(  )
A.[0,+∞)B.[2,+∞)C.[$\frac{1}{2}$,+∞)D.[$\frac{1}{2}$,$\frac{5}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组.若第5组抽出的号码为22,则第10组抽出的号码应是(  )
A.45B.46C.47D.48

查看答案和解析>>

同步练习册答案