分析 (1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(2)由题意可得 sin(2x+$\frac{π}{6}$)>$\frac{1}{2}$,故有 2kπ+$\frac{π}{6}$<2x+$\frac{π}{6}$<2kπ+$\frac{5π}{6}$,k∈Z,由此求得x的范围.
解答 解:(1)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象,
可得A=1,$\frac{2π}{3}$-$\frac{π}{6}$=$\frac{1}{2}•\frac{2π}{ω}$,求得ω=2.
再根据五点法作图可得2×$\frac{π}{6}$+φ=$\frac{π}{2}$,求得φ=$\frac{π}{6}$,故函数f(x)=sin(2x+$\frac{π}{6}$),可得它的周期为$\frac{2π}{2}$=π.
(2)由不等式f(x)>$\frac{1}{2}$ 可得 sin(2x+$\frac{π}{6}$)>$\frac{1}{2}$,可得 2kπ+$\frac{π}{6}$<2x+$\frac{π}{6}$<2kπ+$\frac{5π}{6}$,k∈Z,
求得kπ<x<kπ+$\frac{π}{3}$,故 sin(2x+$\frac{π}{6}$)>$\frac{1}{2}$的解集为{x|kπ<x<kπ+$\frac{π}{3}$,k∈Z}.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,解三角不等式,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{2}$ | B. | 4 | C. | $\frac{9}{2}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-1,0)∪(1,+∞) | B. | (-∞,-1)∪(0,1) | C. | (-∞,-1)∪(1,+∞) | D. | (-1,0)∪(0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{15}}{15}$) | B. | ($\frac{\sqrt{15}}{15}$,$\frac{\sqrt{3}}{3}$) | ||
C. | (-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{15}}{15}$)∪($\frac{\sqrt{15}}{15}$,$\frac{\sqrt{3}}{3}$) | D. | (-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{15}}{15}$]∪[$\frac{\sqrt{15}}{15}$,$\frac{\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com