8£®ÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÈôÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Sn=n2+n+1£¬Ôò{an}ΪµÄµÈ²îÊýÁÐ
B£®ÈôÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Sn=2n-2£¬Ôò{an}ΪµÈ±ÈÊýÁÐ
C£®·ÇÁãʵÊýa£¬b£¬c²»È«ÏàµÈ£¬Èôa£¬b£¬c³ÉµÈ²îÊýÁУ¬Ôò$\frac{1}{a}$£¬$\frac{1}{b}$£¬$\frac{1}{c}$¿ÉÄܹ¹³ÉµÈ²îÊýÁÐ
D£®·ÇÁãʵÊýa£¬b£¬c²»È«ÏàµÈ£¬Èôa£¬b£¬c³ÉµÈ±ÈÊýÁУ¬Ôò$\frac{1}{a}$£¬$\frac{1}{b}$£¬$\frac{1}{c}$Ò»¶¨¹¹³ÉµÈ±ÈÊýÁÐ

·ÖÎö ÔÚAÖУ¬ÓÉ${a}_{n}=\left\{\begin{array}{l}{{S}_{1}£¬n=1}\\{{S}_{n}-{S}_{n-1}£¬n¡Ý2}\end{array}\right.$£¬µÃµ½{an}²»ÎªµÄµÈ²îÊýÁУ»ÔÚBÖУ¬ÓÉa1=S1=2-2=0£¬µÃµ½{an}²»ÎªµÈ±ÈÊýÁУ»ÔÚCÖУ¬Èô$\frac{1}{a}$£¬$\frac{1}{b}$£¬$\frac{1}{c}$¹¹³ÉµÈ²îÊýÁУ¬ÄÜÍƵ¼³öa=c£¬Óë·ÇÁãʵÊýa£¬b£¬c²»È«ÏàµÈì¶Ü£¬´Ó¶ø$\frac{1}{a}$£¬$\frac{1}{b}$£¬$\frac{1}{c}$²»¿ÉÄܹ¹³ÉµÈ²îÊýÁУ»ÔÚÔÚDÖУ¬Èôa£¬b£¬c³ÉµÈ±ÈÊýÁУ¬Ôò$\frac{1}{{b}^{2}}=\frac{1}{ac}$=$\frac{1}{a}¡Á\frac{1}{c}$£¬$\frac{1}{a}$£¬$\frac{1}{b}$£¬$\frac{1}{c}$Ò»¶¨³ÉµÈ±ÈÊýÁУ®

½â´ð ½â£ºÔÚAÖУ¬¡ßÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Sn=n2+n+1£¬
¡àa1=S1=1+1+1=3£¬
an=Sn-Sn-1=£¨n2+n+1£©-[£¨n-1£©2+£¨n-1£©+1]=2n£¬
n=1ʱ£¬an=2¡Ùa1£¬¹Ê{an}²»ÎªµÄµÈ²îÊýÁУ¬¹ÊA´íÎó£»
ÔÚBÖУ¬¡ßÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Sn=2n-2£¬
¡àa1=S1=2-2=0£¬
¡à{an}²»ÎªµÈ±ÈÊýÁУ¬¹ÊB´íÎó£»
ÔÚCÖУ¬Èô$\frac{1}{a}$£¬$\frac{1}{b}$£¬$\frac{1}{c}$¹¹³ÉµÈ²îÊýÁУ¬Ôò$\frac{2}{b}=\frac{1}{a}+\frac{1}{c}$=$\frac{a+c}{ac}$=$\frac{2b}{ac}$£¬
¡àb2=ac£¬¡àac=£¨$\frac{a+c}{2}$£©2=$\frac{{a}^{2}+{c}^{2}+2ac}{4}$£¬¡àa=c£¬¼Ì¶øa=c=b£¬Óë·ÇÁãʵÊýa£¬b£¬c²»È«ÏàµÈì¶Ü£¬
¡à$\frac{1}{a}$£¬$\frac{1}{b}$£¬$\frac{1}{c}$²»¿ÉÄܹ¹³ÉµÈ²îÊýÁУ¬¹ÊC´íÎó£»
ÔÚDÖУ¬¡ß·ÇÁãʵÊýa£¬b£¬c²»È«ÏàµÈ£¬a£¬b£¬c³ÉµÈ±ÈÊýÁУ¬
¡àb2=ac£¬¡à$\frac{1}{{b}^{2}}=\frac{1}{ac}$=$\frac{1}{a}¡Á\frac{1}{c}$£¬
¡à$\frac{1}{a}$£¬$\frac{1}{b}$£¬$\frac{1}{c}$Ò»¶¨³ÉµÈ±ÈÊýÁУ¬¹ÊDÕýÈ·£®
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁк͵ȱÈÊýÁеÄÅжϣ¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµÈ²îÊýÁС¢µÈ±ÈÊýÁеÄÐÔÖÊ£¬¹«Ê½${a}_{n}=\left\{\begin{array}{l}{{S}_{1}£¬n=1}\\{{S}_{n}-{S}_{n-1}£¬n¡Ý2}\end{array}\right.$µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®£¨ÎÄ¿Æ×ö£©ÔڵȲîÊýÁÐ{an}ÖУ¬ÒÑÖªa1=13£¬a2=10
£¨1£©Çó{an}µÄͨÏʽ£»  
£¨2£©Éèbn=$\frac{1}{{{a_n}{a_{n+1}}}}$£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªÔ²C¾­¹ýA£¨5£¬2£©£¬B£¨-1£¬4£©Á½µã£¬ÇÒÔ²ÐÄÔÚxÖáÉÏ£¬ÔòÔ²CµÄ·½³ÌΪ£¨x-1£©2+y2=20£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®É趨ÒåÔÚRÉϵĺ¯Êýf£¨x£©=$\left\{\begin{array}{l}{2£¨x=0£©}\\{lo{g}_{3}|x|£¨x¡Ù0£©}\end{array}\right.$£¬Èô¹ØÓÚxµÄ·½³Ìf2£¨x£©+bf£¨x£©+c=0Ç¡ÓÐ3¸ö²»Í¬µÄʵÊý½â£¬Ôòbc=£¨¡¡¡¡£©
A£®-9B£®9C£®-16D£®16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÆ溯Êý£¬ÇÒµ±x£¾0ʱ£¬f£¨x£©=x+$\frac{1}{x}$-4£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôµ±x¡Ê[-1£¬1]ʱ£¬²»µÈʽa•3x-f£¨3x£©¡Ü0ºã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªtanA=$\frac{1}{2}$£¬tanB=$\frac{1}{3}$£¬ÇÒ×±ßµÄ³¤Îª1£¬Ôò¡÷ABC×î¶Ì±ßµÄ³¤Îª$\frac{\sqrt{5}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®¼ÆËã$7¡Á{£¨\frac{49}{25}£©^{-£¨\frac{1}{2}£©}}-{8^{\frac{2}{3}}}$½á¹ûÊÇ£¨¡¡¡¡£©
A£®-1B£®$\frac{1}{2}$C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖª£¨1.40.8£©a£¼£¨0.81.4£©a£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èç¹ûº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[-1£¬1]£¬ÄÇôº¯Êýf£¨x2-1£©µÄ¶¨ÒåÓòÊÇ£¨¡¡¡¡£©
A£®[0£¬2]B£®[-1£¬1]C£®[-2£¬2]D£®[-$\sqrt{2}$£¬$\sqrt{2}$]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸