精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.

(1)求异面直线AP,BM所成角的余弦值;
(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为 ,求λ的值.

【答案】
(1)解:因为PA⊥平面ABCD,且AB,AD平面ABCD,

所以PA⊥AB,PA⊥AD,

又因为∠BAD=90°,所以PA,AB,AD两两互相垂直.

分别以AB,AD,AP为x,y,z轴建立空间直角坐标系,

则由AD=2AB=2BC=4,PA=4可得

A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),

P(0,0,4),

又因为M为PC的中点,所以M(1,1,2).

所以

所以 =

所以异面直线AP,BM所成角的余弦值为


(2)解:因为AN=λ,所以N(0,λ,0)(0≤λ≤4),则

设平面PBC的法向量为 =(x,y,z),

令x=2,解得y=0,z=1,

所以 =(2,0,1)是平面PBC的一个法向量.

因为直线MN与平面PBC所成角的正弦值为

所以

解得λ=1∈[0,4],

所以λ的值为1.


【解析】(1)分别以AB,AD,AP为x,y,z轴建立空间直角坐标系,求出 ,利用向量的夹角公式,即可求异面直线AP,BM所成角的余弦值;(2)求出平面PBC的一个法向量,利用直线MN与平面PBC所成角的正弦值为 ,求λ的值.
【考点精析】掌握异面直线及其所成的角和空间角的异面直线所成的角是解答本题的根本,需要知道异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆离心率是,焦点到相应准线的距离是3.

(1)求椭圆的方程;

(2)如图,设A是椭圆的左顶点,动圆过定点E(1,0)和F(7,0),且与直线x=4交于点P,Q.

求证:AP,AQ斜率的积是定值;

AP,AQ分别与椭圆交于点M,N,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,DBC的中点.

(Ⅰ)证明平面

(Ⅱ)若,求直线AB与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知角A,B,C所对的边分别为a,b,c,且tanB=2,tanC=3.
(1)求角A的大小;
(2)若c=3,求b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】类比三角形中的性质:(1)两边之和大于第三边;(2)中位线长等于底边的一半;(3)三内角平分线交于一点; 可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积;(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于第四个面面积的;(3)四面体的六个二面角的平分面交于一点。其中类比推理结论正确的有 ( )

A. (1) B. (1)(2) C. (1)(2)(3) D. 都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}满足:a1=1,an+1=ran+r(n∈N* , 实数r是非零常数),则“r=1”是“数列{an}是等差数列”的(
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知抛物线C的方程Cy2="2" p xp0)过点A1-2.

I)求抛物线C的方程,并求其准线方程;

II)是否存在平行于OAO为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OAl的距离等于?若存在,求出直线l的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠ADC=120°,AB=2CD=2,平面D1DCC1垂直平面ABCD,D1C⊥AB,M是线段AB的中点.
(Ⅰ)求证:D1M∥面B1BCC1
(Ⅱ)若DD1=2,求平面C1D1M和平面ABCD所成的锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ln(x+a)(a∈R)有唯一的零点x0 , 则(
A.﹣1<x0<﹣
B.﹣ <x0<﹣
C.﹣ <x0<0
D.0<x0

查看答案和解析>>

同步练习册答案