分析 依题意$\frac{4}{7}+\frac{4}{7n}$<1,且三次后全部进入,$\frac{4}{7}+\frac{4}{7n}$+$\frac{4}{7{n}^{2}}$≥1,n∈N*.即可得出.
解答 解:依题意$\frac{4}{7}+\frac{4}{7n}$<1,且三次后全部进入,$\frac{4}{7}+\frac{4}{7n}$+$\frac{4}{7{n}^{2}}$≥1,n∈N*.
因此不等式组为:$\left\{\begin{array}{l}{\frac{4}{7}+\frac{4}{7n}<1}\\{\frac{4}{7}+\frac{4}{7n}+\frac{4}{7{n}^{2}}≥1}\\{n∈{N}^{*}}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{\frac{4}{7}+\frac{4}{7n}<1}\\{\frac{4}{7}+\frac{4}{7n}+\frac{4}{7{n}^{2}}≥1}\\{n∈{N}^{*}}\end{array}\right.$.
点评 本题考查了不等式的实际应用、不等式的思想,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $x+\frac{1}{x}$ | B. | $\sqrt{{x^2}+2}+\frac{4}{{\sqrt{{x^2}+2}}}$ | C. | $\frac{y}{x}+\frac{x}{y}$ | D. | $x-2\sqrt{x}+3$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 函数f(-x)的最小正周期为π | |
B. | 函数f(-x)图象的对称轴方程为x=$\frac{π}{12}$+$\frac{kπ}{2}$(k∈Z) | |
C. | 函数f(-x)图象的对称中心为($\frac{π}{6}$+$\frac{kπ}{2}$,0)(k∈Z) | |
D. | 函数f(-x)的单调递减区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com