精英家教网 > 高中数学 > 题目详情

【题目】己知n为正整数,数列{an}满足an>0,4(n+1)an2﹣nan+12=0,设数列{bn}满足bn=
(1)求证:数列{ }为等比数列;
(2)若数列{bn}是等差数列,求实数t的值:
(3)若数列{bn}是等差数列,前n项和为Sn , 对任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求满足条件的所有整数a1的值.

【答案】
(1)证明:数列{an}满足an>0,4(n+1)an2﹣nan+12=0,

= an+1,即 =2

∴数列{ }是以a1为首项,以2为公比的等比数列


(2)解:由(1)可得: = ,∴ =n 4n1

∵bn= ,∴b1= ,b2= ,b3=

∵数列{bn}是等差数列,∴2× = +

= +

化为:16t=t2+48,解得t=12或4


(3)解:数列{bn}是等差数列,由(2)可得:t=12或4.

①t=12时,bn= = ,Sn=

∵对任意的n∈N*,均存在m∈N*,使得8a12Sn﹣a14n2=16bm成立,

∴8 × ﹣a14n2=16×

= ,n=1时,化为:﹣ = >0,无解,舍去.

②t=4时,bn= = ,Sn=

对任意的n∈N*,均存在m∈N*,使得8a12Sn﹣a14n2=16bm成立,

∴8 × ﹣a14n2=16×

∴n =4m,

∴a1=2 .∵a1为正整数,∴ = k,k∈N*

∴满足条件的所有整数a1的值为{a1|a1=2 ,n∈N*,m∈N*,且 = k,k∈N*}


【解析】(1)数列{an}满足an>0,4(n+1)an2﹣nan+12=0,化为: =2× ,即可证明.(2)由(1)可得: = ,可得 =n 4n1 . 数列{bn}满足bn= ,可得b1 , b2 , b3 , 利用数列{bn}是等差数列即可得出t.(3)根据(2)的结果分情况讨论t的值,化简8a12Sn﹣a14n2=16bm , 即可得出a1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线 的左右焦点分别为 右支上的点,线段的左支于点,若是边长等于的等边三角形,则双曲线的标准方程为( )

A. B. C. D.

【答案】A

【解析】

即双曲线的标准方程为,选A.

型】单选题
束】
11

【题目】张师傅欲将一球形的石材工件削砍加工成一圆柱形的新工件,已知原球形工件的半径为,则张师傅的材料利用率的最大值等于(注:材料利用率=)( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正数x,y满足15x﹣y=22,则x3+y3﹣x2﹣y2的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆 =l (a>b>0)的焦距为2,离心率为 ,椭圆的右顶点为A.

(1)求该椭圆的方程:
(2)过点D( ,﹣ )作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的
斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间

(Ⅱ)设若对任意均存在使得的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二阶矩阵M有特征值λ=8及对应的一个特征向量 =[ ],并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).
(1)求矩阵M;
(2)求矩阵M的另一个特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O1和圆O2的极坐标方程分别为ρ=2,
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输入n=10,则输出的S=( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点A(3,-1)且在两坐标轴上截距的绝对值相等的直线有____条,方程为:_____

查看答案和解析>>

同步练习册答案