精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=log x.
(1)求函数f(x)的解析式;
(2)解不等式f(x2-1)>-2.

【答案】
(1)解:当x<0时,-x>0,则f(-x)=

因为函数f(x)是奇函数,所以f(-x)=- f(x).

因此当x<0时, f(x)=-

x=0时,f(0)=0

所以函数f(x)的解析式为


(2)解:不等式f(x2-1)>-2可化为,

时, ,解得

时, ,满足条件;

时, ,解得 .

所以,

解得

即不等式的解集为


【解析】(1)利用奇函数的定义得出f(-x)=- f(x),再由已知条件得出当x<0时 f(x)=- log ( - x )的解析式,再由f(0)=0得出f(x) 的解析式即可。(2)根据对数的单调性,对x2 1的范围进行讨论得出不同区间下的x的取值范围把三种情况的结果并起来即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市春节7家超市的广告费支出x(万元)和销售额y(万元)数据如下,

超市

A

B

C

D

E

F

G

广告费支出x

1

2

4

6

11

13

19

销售额y

19

32

40

44

52

53

54


(1)请根据上表提供的数据.用最小二乘法求出y关于x的线性回归方程; = x+
(2)用二次函数回归模型拟合y与x的关系,可得回归方程: =﹣0.17x2+5x+20. 经计算二次函数回归模型和线性回归模型的R2分别约为0.93和0.75,请用R2说明选择哪个回归模型更合适.并用此模型预测A超市广告费支出为3万元时的销售额,
参考数据及公式: =8, =42. xiyi=2794, x =708,
= = = x.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数f(x)满足f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=3x﹣1,则f(9)=(
A.﹣2
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(Ⅰ)当若关于的方程有且只有两个不同的实根求实数的取值范围

(Ⅱ)对任意不等式恒成立的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,函数 (a>0),若存在 ,使得 成立,则实数 的取值范围是(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市出租车的收费标准是:3千米以内(含3千米),收起步价8元;3千米以上至8千米以内(含8千米),超出3千米的部分按元/千米收取;8千米以上,超出8千米的部分按2元/千米收取.

(1)计算某乘客搭乘出租车行驶7千米时应付的车费;

(2)试写出车费 (元)与里程 (千米)之间的函数解析式并画出图像;

(3)小陈周末外出,行程为10千米,他设计了两种方案:

方案1:分两段乘车,先乘一辆行驶5千米,下车换乘另一辆车再行5千米至目的地

方案2:只乘一辆车至目的地,试问:以上哪种方案更省钱,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱与四棱锥的组合体中,已知平面,四边形是平行四边形, ,设是线段中点.

(1)求证: 平面

(2)证明:平面平面

(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的 城市和交通拥堵严重的 城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图(如图所示):

若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此 列联表,并据此样本分析是否有 的把握认为城市拥堵与认可共享单车有关:

合计

认可

不认可

合计

附:参考数据:(参考公式:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若函数F(x)= +ax2 上为减函数,求 的取值范围;
(2)当 时, ,当 时,方程 - =0有两个不等的实根,求实数 的取值范围;

查看答案和解析>>

同步练习册答案