精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知直线为参数,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为相交于两点

1时,判断直线与曲线的位置关系,并说明理由;

2变化时,求弦的中点的普通方程,并说明它是什么曲线

【答案】1相离2为一段圆弧

【解析】

试题分析:1先分别求出直线与曲线的普通方程, 判断圆心到直线的距离与圆的半径之间的大小,得出结论2经分析得到,故点的中点的距离为定值1,得到点的轨迹方程,注意范围

试题解析:解:1时,将直线的参数方程化为普通方程为

曲线则圆的圆心,半径

则圆心到直线的距离则直线与曲线的位置关系为相离

2由直线的方程可知,直线恒过定点,弦的中点满足故点的中点的距离为定值1,当直线与圆相切时,切点分别记为

则点的普通方程为为一段圆弧

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为坐标原点,已知椭圆的离心率为,抛物线的准线方程为

1求椭圆和抛物线的方程;

2设过定点的直线与椭圆交于不同的两点,若在以为直径的圆的外部,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知yf(x)是定义在R上的奇函数x<0f(x)12x.

(1)求函数f(x)的解析式;

(2)画出函数f(x)的图像;

(3)写出函数f(x)的单调区间及值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:数列对一切正整数均满足,称数列凸数列,以下关于凸数列的说法:

等差数列一定是凸数列;

首项,公比的等比数列一定是凸数列;

若数列为凸数列,则数列是单调递增数列;

若数列为凸数列,则下标成等差数列的项构成的子数列也为凸数列

其中正确说法的序号是_____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1,求的极值和单调区间;

2若在区间上至少存在一点,使得成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为弘扬民族古典文化,学校举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确给改选手记正10分,否则记负10分根据以往统计,某参赛选手能答对每一个问题的概率为;现记该选手在回答完个问题后的总得分为

1的概率;

2,求的分布列,并计算数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,假命题是_________ (填序号).

①经过定点P(x0y0)的直线不一定都可以用方程yy0k(xx0)表示;

②经过两个不同的点P1(x1y1)、P2(x2y2)的直线都可以用

方程(yy1)(x2x1)=(xx1)(y2y1)来表示;

③与两条坐标轴都相交的直线不一定可以用方程表示;

④经过点Q(0,b)的直线都可以表示为ykxb.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.

(1)求的方程;

(2)若点上,过的两弦,若,求证: 直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

I)讨论函数的单调性;

II)若,证明:对任意,总有.

查看答案和解析>>

同步练习册答案