精英家教网 > 高中数学 > 题目详情
设e1、e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足·=0,则的值为(    )

A.1                B.                 C.2                D.不确定

C

解析:设椭圆长半轴长为a,双曲线实半轴长为a′,

由题意得|PF1|2+|PF2|2=4c2.

=4c2.

=4c2.

+=2,即+=2.故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设e1,e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足
PF1
PF2
=0
,则
e
2
1
+
e
2
2
(e1e2)2
的值为(  )
A、
1
2
B、1
C、2
D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

设e1.e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足
.
PF1
.
PF2
=0,则
1
e
2
1
+
1
e
2
2
的值为(  )
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长春一模)设e1、e2分别为具有公共焦点F1、F2的椭圆和双曲线的离心率,P是两曲线的一个公共点,且满足|
F1
+
PF2
|=|
F1F2
|,则
e1e2
e
2
1
+
e
2
2
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•盐城一模)设e1,e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足
PF1
PF2
=0,则
e
2
1
+
e
2
2
(e1e2)2
的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•聊城一模)设e1,e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足
PF1
PF2
=0,则4e12+e22的最小值为(  )

查看答案和解析>>

同步练习册答案