精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为分别是其左、右焦点,且过点.

(1)求椭圆的标准方程;

(2)若在直线上任取一点,从点的外接圆引一条切线,切点为.问是否存在点,恒有?请说明理由.

【答案】(1) (2) ,或

【解析】

(1)求出后可得椭圆的标准方程.

(2)先求出的外接圆的方程,设点为点为,则由可得对任意的恒成立,故可得关于的方程,从而求得的坐标.

解:(1)因为椭圆的离心率为,所以. ①

又椭圆过点,所以代入得. ②

. ③

由①②③,解得.所以椭圆的标准方程为.

(2)由(1)得,的坐标分别是.

因为的外接圆的圆心一定在边的垂直平分线上,

的外接圆的圆心一定在轴上,

所以可设的外接圆的圆心为,半径为,圆心的坐标为

则由及两点间的距离公式,得

解得.

所以圆心的坐标为,半径

所以的外接圆的方程为,即.

点为点为,因为

所以

化简,得

所以,消去,得

解得.

时,

时,.

所以存在点,或满足条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知.

1)求的定义域;并证明是定义域上的奇函数;

2)判断在定义域上的单调性(无需证明);

3)求使不等式解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若,讨论的单调性

(2)若上有两个零点的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016高考新课标II,理15)有三张卡片,分别写有121323.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:我与丙的卡片上相同的数字不是1”,丙说:我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新个税法于2019年1月1日进行实施.为了调查国企员工对新个税法的满意程度,研究人员在地各个国企中随机抽取了1000名员工进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.

(1)求的值并估计被调查的员工的满意程度的中位数;(计算结果保留两位小数)

(2)若按照分层抽样从中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为(为参数),圆的方程为.以原点为极点,轴正半轴为极轴建立极坐标系.

(Ⅰ)求直线及圆的极坐标方程;

(Ⅱ)若直线与圆交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点(为自然对数的底数).

(Ⅰ)求实数的取值范围;

(Ⅱ)求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的各条棱长均相等, 的中点, 分别是线段和线段上的动点(含端点),且满足.当运动时,下列结论中不正确的是( )

A. 平面平面 B. 三棱锥的体积为定值

C. 可能为直角三角形 D. 平面与平面所成的锐二面角范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为也为抛物线的焦点,点在第一象限的交点,且.

(I)求椭圆的方程;

(II)延长,交椭圆于点,交抛物线于点,求三角形的面积.

查看答案和解析>>

同步练习册答案