【题目】已知椭圆的离心率为,,分别是其左、右焦点,且过点.
(1)求椭圆的标准方程;
(2)若在直线上任取一点,从点向的外接圆引一条切线,切点为.问是否存在点,恒有?请说明理由.
【答案】(1) (2) ,或
【解析】
(1)求出后可得椭圆的标准方程.
(2)先求出的外接圆的方程,设点为点为,则由可得对任意的恒成立,故可得关于的方程,从而求得的坐标.
解:(1)因为椭圆的离心率为,所以. ①
又椭圆过点,所以代入得. ②
又. ③
由①②③,解得.所以椭圆的标准方程为.
(2)由(1)得,,的坐标分别是.
因为的外接圆的圆心一定在边的垂直平分线上,
即的外接圆的圆心一定在轴上,
所以可设的外接圆的圆心为,半径为,圆心的坐标为,
则由及两点间的距离公式,得,
解得.
所以圆心的坐标为,半径,
所以的外接圆的方程为,即.
设点为点为,因为,
所以,
化简,得,
所以,消去,得,
解得或.
当时,;
当时,.
所以存在点,或满足条件.
科目:高中数学 来源: 题型:
【题目】(2016高考新课标II,理15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新个税法于2019年1月1日进行实施.为了调查国企员工对新个税法的满意程度,研究人员在地各个国企中随机抽取了1000名员工进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.
(1)求的值并估计被调查的员工的满意程度的中位数;(计算结果保留两位小数)
(2)若按照分层抽样从,中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数),圆的方程为.以原点为极点,轴正半轴为极轴建立极坐标系.
(Ⅰ)求直线及圆的极坐标方程;
(Ⅱ)若直线与圆交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱的各条棱长均相等, 为的中点, 分别是线段和线段上的动点(含端点),且满足.当运动时,下列结论中不正确的是( )
A. 平面平面 B. 三棱锥的体积为定值
C. 可能为直角三角形 D. 平面与平面所成的锐二面角范围为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为也为抛物线的焦点,点为在第一象限的交点,且.
(I)求椭圆的方程;
(II)延长,交椭圆于点,交抛物线于点,求三角形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com