精英家教网 > 高中数学 > 题目详情

【题目】某工厂要建造一个长方形无盖蓄水池,其容积为立方米,深为.如果池底每平方米的造价为元,池壁每平方米的造价为元,那么怎样设计水池能使总造价最低(设蓄水池池底的相邻两边边长分别为)?最低总造价是多少?

【答案】将蓄水池的池底设计成边长为米的正方形时总造价最低,最低总造价是元.

【解析】

要建造一个长方形无盖蓄水池,其容积为立方米,深为,设蓄水池池底的相邻两边边长分别为,可得,求出总造价为的表达式,根据均值不等式,即可求得答案.

要建造一个长方形无盖蓄水池,其容积为立方米,深为

设蓄水池池底的相邻两边边长分别为

由体积为可知:

设总造价为.

当且仅当,时,上式成立,此时.

将蓄水池的池底设计成边长为40米的正方形时总造价最低,最低总造价是元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的极小值;

2)若上,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年的金秋十月,越野e族阿拉善英雄会在内蒙古自治区阿拉善盟阿左旗腾格里沙漠举行,该项目已打造成集沙漠竞技运动、汽车文化极致体验、主题休闲度假为一体的超级汽车文化赛事娱乐综合体.为了减少对环境的污染,某环保部门租用了特制环保车清洁现场垃圾.通过查阅近5年英雄会参会人数(万人)与沙漠中所需环保车辆数量(辆),得到如下统计表:

参会人数(万人)

11

9

8

10

12

所需环保车辆(辆)

28

23

20

25

29

(1)根据统计表所给5组数据,求出关于的线性回归方程

(2)已知租用的环保车平均每辆的费用(元)与数量(辆)的关系为

.主办方根据实际参会人数为所需要投入使用的环保车,

每辆支付费用6000元,超出实际需要的车辆,主办方不支付任何费用.预计本次英雄会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测环保部门在确保清洁任务完成的前提下,应租用多少辆环保车?获得的利润是多少?(注:利润主办方支付费用租用车辆的费用).

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在点处的切线.

)求的解析式.

)求证:

)设,其中.若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={xR|x2axb=0},B={xR|x2cx+15=0},AB={3},AB={3,5}.

(1)求实数abc的值;

(2)设集合P={xR|ax2bxc≤7},求集合P∩Z.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点在抛物线 上,直线 与抛物线交于 两点,且直线 的斜率之和为-1.

(1)求的值;

(2)若,设直线轴交于点,延长与抛物线交于点,抛物线在点处的切线为,记直线 轴围成的三角形面积为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,

(Ⅰ)求证:AC⊥A1B;

(Ⅱ)求二面角A﹣A1C﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(Ⅰ)求成绩落在上的频率,并补全这个频率分布直方图;

(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分;

(Ⅲ)为调查某项指标,从成绩在60~80分,这两分数段组的学生中按分层抽样的方法抽取6人,再从这6人中选2人进行对比,求选出的这2名学生来自同一分数段的概率.

查看答案和解析>>

同步练习册答案