如图,已知四棱锥,底面是等腰梯形,
且∥,是中点,平面,
, 是中点.
(1)证明:平面平面;
(2)求平面与平面所成锐二面角的余弦值.
(1)详见解析;(2)
解析试题分析:(1)根据中位线可得∥,从而可证得∥平面。证四边形为平行四边形可得∥平面,从而可证得平面平面。(2)法一:延长、交于点,连结,则平面,易证△与△全等。过作的垂线,则与垂足的连线也垂直。由二面角的平面角的定义可得所求二面角。再用余弦定理即可求其余弦值。法二空间向量法。由题意可以为坐标原点建立空间直角坐标系。根据各点的坐标求出个向量的坐标,在根据数量积公式求各面的法向量,在用数量积公式求其两法向量夹角的余弦值。注意两法向量所成的角可能与二面角相等也可能为其补角。
试题解析:(1) 证明: 且∥,2分
则平行且等于,即四边形为平行四边形,所以.
6分
(2) 『解法1』:
延长、交于点,连结,则平面,易证△与△全等,过作于,连,则,由二面角定义可知,平面角为所求角或其补角.
易求,又,,由面积桥求得,所以
所以所求角为,所以
因此平面与平面所成锐二面角的余弦值为
『解法2』:
以为原点,方向为轴,以平面内过点且垂直于方向为轴 以方向为
科目:高中数学 来源: 题型:解答题
如图,在四棱锥E﹣ABCD中,矩形ABCD所在的平面与平面AEB垂直,且∠BAE=120°,AE=AB=4,AD=2,F,G,H分别为BE,AE,BC的中点
(1)求证:DE∥平面FGH;
(2)若点P在直线GF上,=λ,且二面角D﹣BP﹣A的大小为,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4
(1)求异面直线GE与PC所成角的余弦值;
(2)若F点是棱PC上一点,且,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,于,延长AE交BC于F,将ABD沿BD折起,使平面ABD平面BCD,如图2所示.
(1)求证:AE⊥平面BCD;
(2)求二面角A–DC–B的余弦值.
(3)在线段上是否存在点使得平面?若存在,请指明点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱AB上的动点.
(1)求证:DA1⊥ED1;
(2)若直线DA1与平面CED1成角为45o,求的值;
(3)写出点E到直线D1C距离的最大值及此时点E的位置(结论不要求证明).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在四棱锥P-ABCD中,侧面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,,,.
(1)求证:BC平面PBD:
(2)求直线AP与平面PDB所成角的正弦值;
(3)设E为侧棱PC上异于端点的一点,,试确定的值,使得二面角E-BD-P的余弦值为.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
四棱锥P—ABCD的底面是边长为2的菱形,∠DAB=60°,侧棱,,M、N两点分别在侧棱PB、PD上,.
(1)求证:PA⊥平面MNC。
(2)求平面NPC与平面MNC的夹角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com