精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论的单调性;

(2)若恒成立,求实数的最大值.

【答案】(1) 当时, 上单调递减;当 的单调递增区间为;单调递减区间是;当的单调递增区间为,单调递减区间是;(2).

【解析】试题分析:(1)求出的导数,通过的讨论,分别令得增区间, 得减区间;(2)由题意可得恒成立求出导数,确定函数的单调性,可得函数的最值,即可得到结论.

试题解析:(1)

①当时, ,∴上单调递减;

②当,由解得,∴的单调递增区间为

单调递减区间是

③当,同理可得的单调递增区间为,单调递减区间是.

(2)∵恒成立,∴恒成立,

恒成立,

上递增, 上递减,∴

,∴

上递增, 上递减,

,∴,∴实数的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知c>0,命题p:函数R上单调递减,命题q:不等式的解集是R,若为真命题, 为假命题,求c的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f′′(x)是f′(x)的导数,若方程f′′(x)有实数解x0 , 则称点(x0 , f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数f(x)= x3 x2+3x﹣ ,请你根据这一发现,计算f( )+f( )+f( )+…+f( )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某创业团队拟生产两种产品,根据市场预测, 产品的利润与投资额成正比(如图1),产品的利润与投资额的算术平方根成正比(如图2).(注: 利润与投资额的单位均为万元)

(1)分別将两种产品的利润表示为投资额的函数;

(2)该团队已筹集到10 万元资金,并打算全部投入两种产品的生产,问:当产品的投资额为多少万元时,生产两种产品能获得最大利润,最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={y|y=log2x,x≥4},B={y|y=( x , ﹣1≤x≤0}.
(1)求A∩B;
(2)若集合C={x|a≤x≤2a﹣1},且C∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图:

求分数在的频率及全班人数;

求分数在之间的频数,并计算频率分布直方图中间矩形的高;

若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(4x+1)﹣ x.
(1)试判断函数f(x)的奇偶性并证明;
(2)设g(x)=log4(a2x a),若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据“2015年国民经济和社会发展统计公报” 中公布的数据,从2011 年到2015 年,我国的

第三产业在中的比重如下:

年份

年份代码

第三产业比重

(1)在所给坐标系中作出数据对应的散点图;

(2)建立第三产业在中的比重关于年份代码的回归方程;

(3)按照当前的变化趋势,预测2017 年我国第三产业在中的比重.

附注: 回归直线方程中的斜率和截距的最小二乘估计公式分别为:

, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问
(1)在y轴上是否存在点M,满足
(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.

查看答案和解析>>

同步练习册答案