精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点个数;
(2)若对x1x2∈R,且x1<x2,f(x1)≠f(x2),证明方程f(x)=
1
2
[f(x1)+f(x2)]
必有一个实数根属于(x1,x2).
(3)是否存在a,b,c∈R,使f(x)同时满足以下条件
①当x=-1时,函数f(x)有最小值0;
②对任意x∈R,都有0≤f(x)-x≤
(x-1)2
2
若存在,求出a,b,c的值,若不存在,请说明理由.
分析:(1)通过对二次函数对应方程的判别式进行分析判断方程根的个数,从而得到零点的个数;
(2)若方程f(x)=
1
2
[f(x1)+f(x2)]
必有一个实数根属于(x1,x2),则函数g(x)=f(x)-
1
2
[f(x1)+f(x2)]
在(x1,x2)必有一零点,进而根据零点存在定理,可以证明
(3)根据条件①和二次函数的图象和性质,可得b=2a,c=a,令x=1,结合条件②,可求出a,b,c的值.
解答:解:(1)∵f(-1)=0,
∴a-b+c=0即b=a+c,
故△=b2-4ac=(a+c)2-4ac=(a-c)2
当a=c时,△=0,函数f(x)有一个零点;
当a≠c时,△>0,函数f(x)有两个零点.
证明:(2)令g(x)=f(x)-
1
2
[f(x1)+f(x2)]
,…(6分)
∵g(x1)=f(x1)-
1
2
[f(x1)+f(x2)]
=
1
2
[f(x1)-f(x2)]

g(x2)=f(x2)-
1
2
[f(x1)+f(x2)]
=
1
2
[f(x2)-f(x1)]

∴g(x1)•g(x2)=-
1
4
[f(x1)-f(x2)]2

∵f(x1)≠f(x2),
故g(x1)•g(x2)<0
∴g(x)=0在(x1,x2)内必有一个实根.
即方程f(x)=
1
2
[f(x1)+f(x2)]
必有一个实数根属于(x1,x2).----(8分)
解:(3)假设a,b,c存在,由①得-
b
2a
=-1,
4ac-b2
4a
=0
∴b=2a,c=a.------------(9分)
由②知对任意x∈R,都有0≤f(x)-x≤
(x-1)2
2

令x=1得0≤f(1)-1≤0
∴f(1)=1
∴a+b+c=1
解得:a=c=
1
4
,b=
1
2
,….(10分)
当a=c=
1
4
,b=
1
2
时,f(x)=
1
4
x2+
1
2
x+
1
4
=
1
4
(x+1)2,其顶点为(-1,0)满足条件①,
又f(x)-x=
1
4
x2-
1
2
x+
1
4
=
1
4
(x-1)2,对任意x∈R,都有0≤f(x)-x≤
(x-1)2
2
,满足条件②.
∴存在a=c=
1
4
,b=
1
2
,使f(x)同时满足条件①、②.   ….(12分)
点评:本题考查函数零点个数与方程根的个数问题,以及存在性问题的处理方式,属于较难的题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案