精英家教网 > 高中数学 > 题目详情
8.设函数f(x)=lnx+x2-2ax+a2,a属于R.
(1)讨论函数f(x)极值点的情况;
(2)若函数f(x)在[$\frac{1}{2}$,2]上不是单调函数.试求实数a的取值范围.

分析 (1)先求出f′(x)(x>0),设g(x)=2x2-2ax+1,①当a≤0时,g(x)>0,可得f′(x)>0,利用单调性即可判断出极值情况.②a>0,(i)△=4a2-8≤0,即0<a≤$\sqrt{2}$时,利用单调性即可判断出极值情况.(ii))△=4a2-8>0,即a>$\sqrt{2}$时,利用单调性即可得出极值情况;
(2)问题转化为函数在区间[$\frac{1}{2}$,2]上有极值点,得到关于a的不等式组,基础即可.

解答 解:(1)f′(x)=$\frac{{2x}^{2}-2ax+1}{x}$(x>0),
设g(x)=2x2-2ax+1,
①当a≤0时,g(x)>0,∴f′(x)>0,
此时函数f(x)单调递增,没有极值点,舍去.
②a>0,(i)△=4a2-8≤0,
即0<a≤$\sqrt{2}$时,f′(x)>0恒成立,
此时函数f(x)单调递增,没有极值点,舍去.
(ii))△=4a2-8>0,即a>$\sqrt{2}$时,
由g(x)<0,解得 $\frac{a-\sqrt{{a}^{2}-2}}{2}$<x<$\frac{a+\sqrt{{a}^{2}-2}}{2}$,
f′(x)<0,此时函数f(x)单调递减;
由g(x)>0,解得0<x<$\frac{a-\sqrt{{a}^{2}-2}}{2}$,或x>$\frac{a+\sqrt{{a}^{2}-2}}{2}$,
f′(x)>0,此时函数f(x)单调递增.
∴x=$\frac{a-\sqrt{{a}^{2}-2}}{2}$是函数f(x)的极大值点;
x=$\frac{a+\sqrt{{a}^{2}-2}}{2}$是函数f(x)的极小值点.
综上可得:当a≤$\sqrt{2}$时,函数f(x)没有极值点;
当a>$\sqrt{2}$时:x=$\frac{a-\sqrt{{a}^{2}-2}}{2}$ 是函数f(x)的极大值点;
x=$\frac{a+\sqrt{{a}^{2}-2}}{2}$是函数f(x)的极小值点.
(2)∵f(x)在[$\frac{1}{2}$,2]上不是单调函数,
∴函数在区间[$\frac{1}{2}$,2]上有极值点,
∴$\frac{1}{2}$<$\frac{a+\sqrt{{a}^{2}-2}}{2}$<2或$\frac{1}{2}$<$\frac{a-\sqrt{{a}^{2}-2}}{2}$<2,
解得:$\frac{3}{2}$<a<$\frac{9}{4}$,
∴a∈($\frac{3}{2}$,$\frac{9}{4}$).

点评 本题考察了函数的单调性问题,考察导数的应用,求函数的极值点问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.直线y=-2x-3的斜率与y轴上的截距分别为(  )
A.-2,3B.-2,-3C.2,-3D.2,3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,在四棱锥P-ABCD中,PA垂直于底面ABCD,底面ABCD是边长为2的菱形,且∠ABC=45°,PA=AB,则直线AP与平面PBC所成的角的正切值是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(3x-y)2+(3-x+y)2,x∈[-1,1].
(Ⅰ)求f(x)的最大值;
(Ⅱ)关于x的方程f(x)=2y2有解,求实数y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设f(x)是以2为周期的奇函数,且f(-$\frac{2}{5}$)=3,若sinα=$\frac{\sqrt{5}}{5}$,则f(4cos2α)的值等于-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解方程:
(1)8•2x=3${\;}^{{x}^{2}+3x}$
(2)log2(2-x-1)•log${\;}_{\frac{1}{2}}$(2-x+1-2)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.现有10张奖券,其中4张有奖,若有4人购买,每人一张,至少有一人中奖的概率是$\frac{13}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线3x+4y=b与圆x2+y2-2x-2y+1=0相交,则b的取值范围为(2,12).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题p:“?x∈N+,2x≥2”的否定为(  )
A.?x∈N+,2x<2B.?x∉N+,2x<2C.?x∉N+,2x<2D.?x∈N+,2x<2

查看答案和解析>>

同步练习册答案