精英家教网 > 高中数学 > 题目详情
17.若正项数列{an}中,a1+a2+a3+…+an=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),n∈N*.则数列{an}的通项公式为(  )
A.an=$\sqrt{n}$-$\sqrt{n-1}$B.an=$\sqrt{n}$+$\sqrt{n-1}$C.an=$\sqrt{n}$-$\sqrt{n+1}$D.an=$\sqrt{n}$+$\sqrt{n+1}$

分析 由a1+a2+a3+…+an=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),n∈N*.当n=1时,a1=$\frac{1}{2}({a}_{1}+\frac{1}{{a}_{1}})$,解得a1=1.同理可得:a2=$\sqrt{2}$-1.${a}_{3}=\sqrt{3}-\sqrt{2}$,a4=2-$\sqrt{3}$.猜想:an=$\sqrt{n}-\sqrt{n-1}$.代入验证即可得出.

解答 解:∵a1+a2+a3+…+an=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),n∈N*
∴当n=1时,a1=$\frac{1}{2}({a}_{1}+\frac{1}{{a}_{1}})$,解得a1=1.
当n=2时,a1+a2=$\frac{1}{2}$(a2+$\frac{1}{{a}_{2}}$),解得a2=$\sqrt{2}$-1.
同理可得:${a}_{3}=\sqrt{3}-\sqrt{2}$,a4=2-$\sqrt{3}$.
猜想:an=$\sqrt{n}-\sqrt{n-1}$.
代入a1+a2+a3+…+an=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),n∈N*.验证成立.
故选:A.

点评 本题考查了递推关系的应用、猜想验证能力,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.求函数f(x)=2${\;}^{\frac{{x}^{2}+1}{{x}^{2}-1}}$的值域为(0,$\frac{1}{2}$]∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数a,b满足:a2+b2≠0,过点M(-1,0)作直线ax+by+2b-a=0的垂线,垂足为N,点P(1,1),则|PN|的最大值为$\sqrt{5}+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.高中某班语文、数学、英语、物理、化学、体育六门课安排在某一天,每门课程一节,上午四节,下午两节,若数学课必须在上午,体育课必须在下午,数、理、化三门课中,任何两门课不相邻(上午第四节与下午第一节不叫相邻),则课程安排的种数为(  )
A.24B.96C.48D.124

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C的离心率为$\frac{\sqrt{2}}{2}$,A,B分别为左、右顶点,F2为其右焦点,P是椭圆C上异于A,B的动点,且$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值为-2.
(1)求椭圆C的方程;
(2)若过左焦点F1的直线交椭圆于M,N两点,求$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=lnx+$\frac{a}{x+1}$(a∈N)在(1,3)上只有一个极值点,则a的取值个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|1≤x≤5},集合B={X|2m≤2x≤8.2m}
(1)若B⊆A,求实数m的取值范围
(2)若A∪(CRB)=R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=cos(sinx)是偶函数(填“奇”“偶”或“非奇非偶”),最小正周期为π.值域为[cos1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=cos2x-2+sin(π-x).
(I)求f($\frac{π}{6}$)的值;
(II)求f(x)的值域.

查看答案和解析>>

同步练习册答案