精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于AB两点,已知AB的横坐标分别为

1)求的值; 2)求的值。

【答案】1

2

【解析】

试题(1)根据题意,由三角函数的定义可得 的值进而可得出的值从而可求的值就,结合两角和正切公式可得答案;(2)由两角和的正切公式可得出 的值,再根据的取值范围,可得出的取值范围,进而可得出的值.

由条件得cosα=,cosβ=.

∵ α,β为锐角,

∴ sinα=,sinβ=.

因此tanα==7,tanβ=.

(1) tan(α+β)==-3.

(2) ∵ tan2β=

∴ tan(α+2β)==-1.

∵ α,β为锐角,∴ 0<α+2β<,∴ α+2β=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】自2017年,大连“蜗享出行”正式引领共享汽车,改变人们传统的出行理念,给市民出行带来了诸多便利该公司购买了一批汽车投放到市场给市民使用据市场分析,每辆汽车的营运累计收入单位:元与营运天数满足

要使营运累计收入高于1400元求营运天数的取值范围;

每辆汽车营运多少天时,才能使每天的平均营运收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时, 恒成立,求的取值范;

(2)若函数有两个极值点,且,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,

(1)讨论单调性;

(2),函数的最大值为,求不超过的最大整数 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若中心在原点的椭圆与双曲线有共同的焦点,且它们的离心率互为倒数,圆的直径是椭圆的长轴,C是椭圆的上顶点,动直线AB过C点且与圆交于A、B两点,CD垂直于AB交椭圆于点D.

(1)求椭圆的方程;

(2)求面积的最大值,并求此时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,分别为ABC所对的边,且

(1)确定角C的大小;

(2)若c,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线和曲线,以极点为坐标原点,极轴为轴非负半轴建立平面直角坐标系.

(1)求曲线和曲线的直角坐标方程;

(2)若点是曲线上一动点,过点作线段的垂线交曲线于点,求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是________度,即________rad.如果大轮的转速为(转/分),小轮的半径为10.5cm,那么小轮周上一点每1s转过的弧长是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是函数)的两个不同的零点,且适当排序后可构成等差数列,也可适当排序后构成等比数列,则________

查看答案和解析>>

同步练习册答案