精英家教网 > 高中数学 > 题目详情
14.已知数列{an}的前n项和为Sn,且3Sn=4an-4(n∈N+).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设cn=log2a1+log2a2+…+log2an,Tn=$\frac{1}{{c}_{1}}$+$\frac{1}{{c}_{2}}$+…+$\frac{1}{{c}_{n}}$,求使Tn>$\frac{λ}{n+2}$对任意n∈N+恒成立的实数λ的取值范围.

分析 (Ⅰ)运用an与Sn的关系式:an=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n>1}\end{array}\right.$,将n换为n-1,两式相减,得到an与an-1的关系式,根据等比数列的定义即得通项公式;
(Ⅱ)由(Ⅰ)化简cn,运用裂项相消法求出Tn,然后运用参数分离法,得到λ<(n+2)(1-$\frac{1}{n+1}$),判断出右边数列的单调性,求出最小值,只需λ小于最小值即可.

解答 解:(I)令n=1,由S1=a1,3S1=4a1-4可得a1=4,
∵3Sn=4an-4,∴当n>1时,3Sn-3Sn-1=(4an-4)-(4an-1-4),
∴3an=4an-4an-1,即$\frac{{a}_{n}}{{a}_{n-1}}$=4,
∴数列{an}是以a1=4为首项,公比为4的等比数列,
∴an=4n=22n;
(Ⅱ)cn=log2a1+log2a2+…+log2an=2+4+…+2(n-1)+2n=n(n+1),
$\frac{1}{{c}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴Tn=$\frac{1}{{c}_{1}}$+$\frac{1}{{c}_{2}}$+…+$\frac{1}{{c}_{n}}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$,
由Tn>$\frac{λ}{n+2}$对任意n∈N+恒成立,
即实数λ<(n+2)(1-$\frac{1}{n+1}$)恒成立;
设dn=(n+2)(1-$\frac{1}{n+1}$)=n+1-$\frac{1}{n+1}$在n≥1递增,
即有n=1时,取得最小值,且为2-$\frac{1}{2}$=$\frac{3}{2}$,
即有λ<$\frac{3}{2}$.
则实数λ的取值范围是(-∞,$\frac{3}{2}$).

点评 本题考查数列的an与Sn的关系式及应用,考查数列的求和方法:裂项相消法,同时常用的分离参数法,通过构造数列dn,判断它的单调性,求出最值,从而解决问题,这一思想应认真掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数y=f(x)是偶函数,且f(1)>f(-2),则f(1)>f(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(0,-2).
(1)当k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为120°时,求k的值;
(2)问:是否存在实数k使得k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$垂直?请给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,动点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.
(1)求轨迹C的方程;
(2)若P是轨迹C上的动点.P点在y轴上的射影是点N,点A(3,4),当x≥0时,求|PA|+|PN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数y=f(x)满足?x∈R,有f(1+x)=f(1-x)=f(x-1),则下列说法错误的是(  )
A.f(x)的图象关于直线x=1对称B.f(x)为奇函数
C.f(x)是周期为2的函数D.f(x)为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}与{bn}中,a1=$\frac{3}{2}$,an•an+1-2an+1=0(n≥2),an•bn-bn=1.
(1)求证:数列{bn}是等差数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.己知线段AB两端点的坐标分别为A(-1,2),B(4,3),若直线1:mx+y-2m=0与线段AB有交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C的圆心在坐标原点O,直线1的方程为x-y-2$\sqrt{2}$=0.
(1)若圆C与直线1相切.求圆C的标准方程;
(2)若圆C上恰有两个点到直线1的距离是1,求圆C的半径的取值范囤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x3+ax2+3x+b(a,b∈R),若f(x)的图象上任意不同两点连线的斜率均大于2,求实数a的取值范围.

查看答案和解析>>

同步练习册答案