精英家教网 > 高中数学 > 题目详情
9.已知命题p:?x∈R,mx2+1<0,命题q:?x∈R,x2+mx+1>0,若p∧q为真命题,则实数m的取值范围是(  )
A.(-∞,-2)B.[-2,0)C.(-2,0)D.(0,2)

分析 利用两个命题是真命题时,求出m的范围,然后求解复合命题成立时,求解m的范围即可.

解答 解:命题p:?x∈R,mx2+1<0,是真命题时,可得m<0;
命题q:?x∈R,x2+mx+1>0,是真命题时,△=m2-4<0,解得m∈(-2,2).
若p∧q为真命题,则两个命题都是真命题,
可得m∈(-2,0).
故选:C.

点评 本题考查命题的真假的判断与应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}的前n项和Sn满足S2=-1,S5=5,则数列{$\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}$}的前2016项的和为(  )
A.$\frac{2016}{4033}$B.-$\frac{4032}{4031}$C.$\frac{2016}{4031}$D.-$\frac{2016}{4031}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A、B、C所对的边分别为a,b,c,且a(sinA-sinB)+bsinB=csinC.
(Ⅰ)求角c的值
(Ⅱ)若2cos2$\frac{A}{2}$-2sin2$\frac{B}{2}$=$\frac{\sqrt{3}}{2}$,且A<B,求$\frac{c}{a}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.抛物线$\frac{1}{4}$y=x2的焦点坐标为(  )
A.(1,0)B.(2,0)C.(0,$\frac{1}{8}$)D.(0,$\frac{1}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$α∈(0,\frac{π}{2}),sin(\frac{π}{4}-α)=\frac{{\sqrt{10}}}{10}$
(1)求tan2α的值;
(2)求$\frac{{sin(α+\frac{π}{4})}}{sin2α+cos2α+1}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-2x+1$,
(1)求函数f(x)的极值;
(2)若对?x∈[-2,3],都有s≥f(x)恒成立,求出s的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知两直线l1:(a+1)x-2y+1=0,l2:x+ay-2=0垂直,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在区间[0,2]上任取两个实数x,y,则x2+y2≤1 的概率为$\frac{π}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中既是奇函数,又在区间[-1,1]上单调递增的是(  )
A.f(x)=x${\;}^{-\frac{1}{2}}$B.f(x)=sin(2x+$\frac{π}{2}$)C.f(x)=3-x-3xD.f(x)=x+tanx

查看答案和解析>>

同步练习册答案