精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)设曲线,点为该曲线上不同的两点.求证:当时,直线的斜率大于-1.

【答案】(Ⅰ)当时,的减区间是,无增区间;当时,的减区间是,增区间是.(Ⅱ)证明见解析.

【解析】

)由,求导得

再分两种情况分类讨论求解.

)由,得,设,要证直线的斜率大于-1.,只需证,只需证.即证上是增函数即可.

)因为

所以

时,,所以上是减函数,

时,令

时,上是增函数,

时,上是减函数,

综上:当时,的减区间是.

时,的减区间是,增区间是.

)因为

所以,设

要证直线的斜率大于-1.

只需证

只需证

只需证.

即证上是增函数,

要证上是增函数,

只需证当时,上恒成立,

只需证当时,上恒成立,

所以当时,上恒成立

以上各步可逆

所以直线的斜率大于-1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中:底面ABCD,底面ABCD为梯形,,且,BC=1,M为棱PD上的点。

(Ⅰ)若,求证:平面PAB;

(Ⅱ)求直线BD与平面PAD所成角的大小;

(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙、丙、丁、戊五名志愿者中选派三人分别从事翻译、导游、礼仪三项不同工作,若其中乙和丙只能从事前两项工作,其余三人均能从事这三项工作,则不同的选派方案共有( )

A.36B.12C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2021年起,新高考科目设置采用模式,普通高中学生从高一升高二时将面临着选择物理还是历史的问题,某校抽取了部分男、女学生调查选科意向,制作出如右图等高条形图,现给出下列结论:

①样本中的女生更倾向于选历史;

②样本中的男生更倾向于选物理;

③样本中的男生和女生数量一样多;

④样本中意向物理的学生数量多于意向历史的学生数量.

根据两幅条形图的信息,可以判断上述结论正确的有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某地区随机抽测120名成年女子的血清总蛋白含量(单位:),由测量结果得如图频数分布表:

1)①仔细观察表中数据,算出该样本平均数______

②由表格可以认为,该地区成年女子的血清总蛋白含量Z服从正态分布.其中近似为样本平均数近似为样本标准差s.经计算,该样本标准差.

医学上,Z过高或过低都为异常,Z的正常值范围通常取关于对称的区间,且Z位于该区间的概率为,试用该样本估计该地区血清总蛋白正常值范围.

120名成年女人的血清总蛋白含量的频数分布表

分组

频数f

区间中点值x

2

65

130

8

67

536

12

69

828

15

71

1065

25

73

1825

24

75

1800

16

77

1232

10

79

790

7

81

567

1

83

83

合计

120

8856

2)结合(1)中的正常值范围,若该地区有5名成年女子检测血清总蛋白含量,测得数据分别为83.2807359.577,从中随机抽取2名女子,设血清总蛋白含量不在正常值范围的人数为X,求X的分布列和数学期望.

附:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,60件,30件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从乙车间的产品中抽取了2件。

(Ⅰ)应从甲、丙两个车间的产品中分别抽取多少件,样本容量n为多少?

(Ⅱ)设抽出的n件产品分别用,…,表示,现从中随机抽取2件产品。

(i)试用所给字母列举出所有可能的抽取结果;

(ii)设M为事件“抽取的2件产品来自不同车间”,求事件M发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行下面的程序框图,如果输入的,则输出的( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc,且

1)求角A的值;

2)若角BBC边上的中线AM,求边b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)如图(1)已知EFGH为空间四边形ABCD的边ABBCCDDA上的点,且EHFG.求证:EHBD

2)如图(2):S是平行四边形ABCD平面外一点,MN分别是SABD上的点,且,求证:MN平面SBC

查看答案和解析>>

同步练习册答案