精英家教网 > 高中数学 > 题目详情
(2012•德阳三模)设b∈R,若复数(1+bi)(2+i)∈R,则b满足(  )
分析:先利用复数的乘法将(1+bi)(2+i)化成a+bi的形式,然后根据a+bi是实数的充要条件是b=0建立等式,解之即可.
解答:解:(1+bi)(2+i)=2-b+(2b+1)i∈R
∴1+2b=0解得b=-
1
2

故选B.
点评:本题主要考查了复数的基本概念,解题的关键根据a+bi是实数的充要条件是b=0,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•德阳三模)将正方形ABCD沿对角线AC折起,当三棱锥B-ACD体积最大时,直线AD与BC所成角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)半径为1的球面上有A、B、C三点,其中点A与B,C两点间的球面距离均为
π
2
,B、C两点间的对面距离为
π
3
,则球心到平面ABC的距离为
21
7
21
7

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.则A∩B为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)若x∈R,则“x2-2x+1≤0”是“x>0”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知函数f(x)=[x2-(a+2)x-2a2+a+2]ex
(1)求函数f(x)的单调增区间;
(2)设a>0,x=2是f(x)的极值点,函数h(x)=xe-xf(x).若过点A(0,m)(m≠0)可作曲线y=h(x)的三条切线,求实数m的取值范围;
(3)设a>1,函数g(x)=(a2+4)ex,若存在x1∈[0,1]、x2∈[0,1],使|f(x1)-f(x2)|<12,求实数a的取值范围.

查看答案和解析>>

同步练习册答案