精英家教网 > 高中数学 > 题目详情
(1)利用向量有关知识与方法证明两角差的余弦公式:C α﹣β:cos(α﹣β)=cosαcosβ+sinαsinβ;
(2)由C α﹣β推导两角和的正弦公式S α+β:sin(α+β)=sinαcosβ+cosαsinβ.
解:(1)如图,在平面直角坐标系中,以原点为圆心, 作一单位圆,
再以原点为顶点,x轴非负半轴为始边分别作角α,β.
设它们的终边分别交单位圆于点P1(cosα,sinα),P2(cosβ,sinβ),
即有两单位向量,它们的所成角是|α﹣β|,
根据向量数量积的性质得:
|             ①
又根据向量数量积的坐标运算得:
=cosαcosβ+sinαsinβ                               ②
 由①②得 cos(α﹣β)=cosαcosβ+sinαsinβ
(2)sin(α+β)=cos(]
=cos[(﹣α]
=cos()cosβ+sin()sinβ =sinαcosβ+cosαsinβ
即有sin(α+β)=sinαcosβ+cosαsinβ
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009全国卷Ⅱ文)(本小题满分12分)

已知椭圆C:                    的离心率为      ,过右焦点F的直线l与C相交于A、B

 
            

两点,当l的斜率为1时,坐标原点O到l的距离为

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?

若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。

解析:本题考查解析几何与平面向量知识综合运用能力,第一问直接运用点到直线的距离公式以及椭圆有关关系式计算,第二问利用向量坐标关系及方程的思想,借助根与系数关系解决问题,注意特殊情况的处理。

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009全国卷Ⅱ文)(本小题满分12分)

已知椭圆C:                    的离心率为      ,过右焦点F的直线l与C相交于A、B

 
            

两点,当l的斜率为1时,坐标原点O到l的距离为

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?

若存在,求出所有的P的坐标与l的方程;若不存在,说明理由。

解析:本题考查解析几何与平面向量知识综合运用能力,第一问直接运用点到直线的距离公式以及椭圆有关关系式计算,第二问利用向量坐标关系及方程的思想,借助根与系数关系解决问题,注意特殊情况的处理。

查看答案和解析>>

同步练习册答案