精英家教网 > 高中数学 > 题目详情
在△ABC中,A、B、C的对边分别是a,b,c,且bcosB是acosC,ccosA的等差中项.
(1)求∠B的大小;
(2)若a+c=
10
,b=2
,求△ABC的面积.
分析:(1)利用等差中项的性质,知acosC+ccosA=2bcosB,由正弦定理,得sinAcosC+cosAsinC=2sinBcosB,由此结合三角函数的性质能够求出∠B.
(2)由(1)知B=
π
3
,利用余弦定理得到
a2+c2-b2
2ac
=
1
2
,再利用三角形面积公式S△ABC=
1
2
acsinB
,能求出△ABC的面积.
解答:解:(1)∵bcosB是acosC,ccosA的等差中项,
∴acosC+ccosA=2bcosB,
由正弦定理,得sinAcosC+cosAsinC=2sinBcosB,
即sin(A+C)=2sinBcosB,
∵A+C=π-B,0<B<π,
∴sin(A+C)=sinB≠0,
∴cosB=
1
2
,B=
π
3

(2)由B=
π
3
,得
a2+c2-b2
2ac
=
1
2

(a+c)2-2ac-b2
2ac
=
1
2

∴ac=2,
S△ABC=
1
2
acsinB=
3
2
点评:本题考查等差中项,正弦定理、余弦定理、三角形面积等公式的应用,解题时要认真审题,注意三角函数恒等变换的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案