精英家教网 > 高中数学 > 题目详情
设a,b为实数,命题甲:ab>b2,命题乙:a<b<0,则命题甲是命题乙的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据充分条件和必要条件的定义结合不等式的性质进行判断即可.
解答: 解:由ab>b2,得b(a-b)>0,
若b>0,则a>b>0,
若b<0,则a<b<0,
故命题甲是命题乙的必要不充分条件,
故选:B.
点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的前n项和Sn满足Sn=2an-n.
(1)求证:数列{an+1}为等比数列;
(2)记bn=log2(an+1),求数列{
1
bnbn+1
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且∠AOB=120°(O是坐标原点),则点P(a,b)与点(1,1)之间距离的最大值为(  )
A、2+
2
B、4
C、
2
D、1+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log
1
2
(x-1)
的定义域为集合A,函数g(x)=3 m-2x-x2-1的值域为集合B,且 A∪B=B,实数m的取值范围是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={a,b,c},有下列结论:
(1)a∈A
(2){a}⊆A
(3)若集合M={x|x∈A},则集合M有8个元素
其中正确结论的序号是
 
(写出所有你认为正确的结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

顶点在原点,对称轴为坐标轴,且过点P(-4,-2)的抛物线的标准方程是(  )
A、y2=-x
B、x2=-8y
C、y2=-8x或x2=-y
D、y2=-x或x2=-8y

查看答案和解析>>

科目:高中数学 来源: 题型:

命题P:已知a>0,函数y=ax在R上是减函数,命题q:方程x2+ax+1=0有两个正根,若p或q为真命题,p且q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
(x-1)2(x+2)
(x-3)(x-4)
≤0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若8名学生和2位老师站成一排合影,则2位老师不相邻的排法种数为
 

查看答案和解析>>

同步练习册答案