精英家教网 > 高中数学 > 题目详情

【题目】对于在区间[m,n]上有意义的两个函数f(x)与g(x),如果对任意x∈[m,n]均有|f(x)﹣g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的;否则称f(x)与g(x)在[m,n]上是非接近的.现有两个函数f1(x)=loga(x﹣3a),与f2(x)=loga (a>0,a≠1),给定区间[a+2,a+3].
(1)若f1(x)与f1(x)在给定区间[a+2,a+3]上都有意义,求a的取值范围;
(2)讨论f1(x)与f1(x)在给定区间[a+2,a+3]上是否是接近的?

【答案】
(1)解:要使f1(x)与f2(x)有意义,则有

要使f1(x)与f2(x)在给定区间[a+2,a+3]上都有意义,等价于: ,所以0<a<1


(2)解:f1(x)与f2(x)在给定区间[a+2,a+3]上是接近的,

|f1(x)﹣f(x2)|≤1|loga(x﹣3a)﹣ |≤1|loga[(x﹣3a)(x﹣a)]|≤1a≤(x﹣2a)2﹣a2 对于任意x∈[a+2,a+3]恒成立.

设h(x)=(x﹣2a)2﹣a2,x∈[a+2,a+3],

且其对称轴x=2a<2在区间[a+2,a+3]的左边,

所以当 ,时,f1(x)与f2(x)在给定区间[a+2,a+3]上是接近的


【解析】(1)要使f1(x)与f2(x)有意义,则有 ,即 ,从而求出a的取值范围.(2)f1(x)与f2(x)在给定区间[a+2,a+3]上是接近的,
|f1(x)﹣f(x2)|≤1|loga(x﹣3a)﹣ |≤1|loga[(x﹣3a)(x﹣a)]|≤1a≤(x﹣2a)2﹣a2 对于任意x∈[a+2,a+3]恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,某公路 一侧有一块空地 ,其中 .当地政府拟在中间开挖一个人工湖△OMN,其中MN都在边AB上(MN不与AB重合,MAN之间),且MON=30°.

(1)若M在距离A2 km处,求点MN之间的距离;

(2)为节省投入资金,人工湖△OMN的面积要尽可能小.试确定M的位置,使△OMN的面积最小,并求出最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a、b∈R,向量 =(x , 1), =(﹣1,b﹣x),函数f(x)=a﹣ 是偶函数.
(1)求b的值;
(2)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中, , 分别为边上的点,且,将沿折起至位置(如图所示),连结,其中.

(Ⅰ) 求证:

(Ⅱ) 在线段上是否存在点使得?若存在,求出点的位置;若不存在,请说明理由.

(Ⅲ) 求点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】CPI 是居民消费价格指数(consumer price index)的简称.居民消费价格指数,是一个反映居民家庭一般所购买的消费品价格水平变动情况的宏观经济指标.下面是根据统计局发布的2017年1月一7月的CPI 同比增长与环比增长涨跌幅数据绘制的折线图.(注:2017 年2月与2016年2月相比较,叫同比;2017 年2 月与2017 年1月相比较,叫环比)根据该折线图,则下列结论错误的是( )

A. 2017 年1月一7月分别与2016年1月一7月相比较,CPI 有涨有跌

B. 2017 年1月一7月CPI 有涨有跌

C. 2017年1月一7月分别与2016年1月一7月相比较,1月CPI 涨幅最大

D. 2017 年2 月一7月CPI 涨跌波动不大,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左、右焦点,动点上,连结并延长点,使得,设点的轨迹为.

(1)求的方程;

(2)设为坐标原点,点,连结点,若直线的斜率与直线的斜率存在且不为零,证明: 这两条直线的斜率之比为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线yx3x2在点P0处的切线l1平行于直线4xy10,且点P0在第三象限.

(1)P0的坐标;(2)若直线l⊥l1,且l也过切点P0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且.

(1)求函数的极值;

(2)当时,证明:.

查看答案和解析>>

同步练习册答案