精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x2-3x+3)ex定义域为[-2,t](t>-2),设f(-2)=m,f(t)=n.
(1)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数;
(2)求证:n>m.
分析:(1)求导函数,由导数的正负,确定函数的单调性,根据f(x)在[-2,t]上为单调函数,即可确定t的取值范围;(2)f(x)在x=1处取得极小值f(1)=e,根据f(-2)=13e-2<e,可得f(x)仅在x=-2处取得[-2,t]上的最小值f(-2),从而当t>-2时,f(-2)<f(t),故问题得证.
解答:(1)解:因为f′(x)=(x2-3x+3)•ex+(2x-3)•ex=x(x-1)•ex.         2分
由f′(x)>0,可得x>1或x<0;由f′(x)<0,可得0<x<1
所以f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减.            4分
欲使f(x)在[-2,t]上为单调函数,则[-2,t]⊆(-∞,0),
∴-2<t≤0.                 6分
(2)证明:因为f(x)在(-∞,0),(1,+∞)上递增,在(0,1)上递减,
所以f(x)在x=1处取得极小值f(1)=e.8分
又∵f(-2)=13e-2<e,所以f(x)仅在x=-2处取得[-2,t]上的最小值f(-2).10分
从而当t>-2时,f(-2)<f(t),即m<n.12分
点评:本题考查导数知识的运用,考查函数的单调性,考查函数的极值与最值,确定函数的单调性是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案