精英家教网 > 高中数学 > 题目详情
已知点P为椭圆
x2
20
+
y2
15
=1
上一点,A、B为椭圆
x2
4
+
y2
3
=1上不同的两点,且
OP
=2
OA
+
OB
,若OA、OB所在的直线的斜率为k1、k2,则k1•k2=
-
3
4
-
3
4
分析:设A(x1,y1),B(x2,y2),P(x0,y0).利用点与椭圆的关系可得
x
2
1
4
+
y
2
1
3
=1
x
2
2
4
+
y
2
2
3
=1
x
2
0
20
+
y
2
0
15
=1
.再利用向量的运算
OP
=2
OA
+
OB
,可得
x0=2x1+x2
y0=2y1+y2
,代入点P满足的椭圆方程即可得出.
解答:解:设A(x1,y1),B(x2,y2),P(x0,y0).
x
2
1
4
+
y
2
1
3
=1
x
2
2
4
+
y
2
2
3
=1
x
2
0
20
+
y
2
0
15
=1

OP
=2
OA
+
OB
,∴
x0=2x1+x2
y0=2y1+y2
,代入上述方程得
(2x1+x2)2
20
+
(2y1+y2)2
15
=1

4
5
(
x
2
1
4
+
y
2
1
3
)+
1
5
(
x
2
2
4
+
y
2
2
3
)
+
4
5
(
1
4
x1x2+
1
3
y1y2)=1

4
5
+
1
5
+
4
5
(
1
4
x1x2+
1
3
y1y2)=1

y1y2
x1x2
=-
3
4

故答案为-
3
4
点评:熟练掌握点与椭圆的关系、向量的运算与相等、斜率的计算公式等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆方程为C:
x2
2
+y2
=1,它的左、右焦点分别为F1、F2.点P(x0,y0)为第一象限内的点.直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.
(1)求椭圆上的点与两焦点连线的最大夹角;
(2)设直线PF1、PF2的斜率分别为k1、k2.试找出使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0成立的条件(用k1、k2表示).
(3)又已知点E为抛物线y2=2px(p>0)上一点,直线F2E与椭圆C的交点G在y轴的左侧,且满足
EG
=2
F2E
,求p的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•湖北模拟)已知点P(x0,y0)是椭圆E:
x2
2
+y2=1
上任意一点x0y0≠1,直线l的方程为
x0x
2
+y0y=1

(I)判断直线l与椭圆E交点的个数;
(II)直线l0过P点与直线l垂直,点M(-1,0)关于直线l0的对称点为N,直线PN恒过一定点G,求点G的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区三模)如图,已知椭圆
x2
2
+y2=1
的左右焦点分别为F1、F2,椭圆的下顶点为A,点P是椭圆上任意一点,,圆M是以PF2为直径的圆.
(1)若圆M过原点O,求圆M的方程;
(2)当圆M的面积为
π
8
时,求PA所在直线的方程;
(3)写出一个定圆的方程,使得无论点P在椭圆的什么位置,该定圆总与圆M相切.请写出你的探究过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区二模)如图,已知点H(-3,0),动点P在y轴上,点Q在x轴上,其横坐标不小于零,点M在直线PQ上,且满足
HP
PM
=0
PM
=-
3
2
MQ

(1)当点P在y轴上移动时,求点M的轨迹C;
(2)过定点F(1,0)作互相垂直的直线l与l',l与(1)中的轨迹C交于A、B两点,l'与(1)中的轨迹C交于D、E两点,求四边形ADBE面积S的最小值;
(3)将(1)中的曲线C推广为椭圆:
x2
2
+y2=1
,并将(2)中的定点取为焦点F(1,0),求与(2)相类似的问题的解.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为C:
x2
2
+y2
=1,它的左、右焦点分别为F1、F2.点P(x0,y0)为第一象限内的点.直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.
(1)求椭圆上的点与两焦点连线的最大夹角;
(2)设直线PF1、PF2的斜率分别为k1、k2.试找出使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0成立的条件(用k1、k2表示).
(3)又已知点E为抛物线y2=2px(p>0)上一点,直线F2E与椭圆C的交点G在y轴的左侧,且满足
EG
=2
F2E
,求p的最大值.

查看答案和解析>>

同步练习册答案