精英家教网 > 高中数学 > 题目详情
椭圆的长轴为A1A2,B为短轴一端点,若∠A1BA2=120°,则椭圆的离心率为(  )
A.
6
3
B.
3
3
C.
3
2
D.
1
2
因为椭圆的长轴为A1A2,B为短轴一端点,∵∠A1BA2=120°,
所以
a
b
=tan(
1
2
A1BA2)=tan60°=
3

即a2=3b2,又a2-c2=b2
∴2a2=3c2
解得e=
2
3
=
6
3

故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

F1、F2是椭圆
x2
9
+
y2
7
=1
的两个焦点,A为椭圆上一点,且∠F1AF2=60°,则△F1AF2的面积为(  )
A.
7
3
3
B.
7
2
C.
7
4
D.
7
5
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
4
+
y2
m
=1
的离心率e∈[
2
2
,1)
,则m的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆
x2
16
+
y2
12
=1
上一点P到焦点F1的距离等于3,那么点P到另一焦点F2的距离等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
a2
+
y2
b2
=1
上到点A(0,b)距离最远的点是B(0,-b),则椭圆的离心率的取值范围为(  )
A.(0,
6
3
]
B.[
6
3
,1)
C.(0,
2
2
]
D.[
2
2
,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线y=
3
2
x
与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的交点在长轴上的射影恰好为椭圆的焦点,则椭圆的离心率是(  )
A.
2
2
B.2C.
2
-1
D.
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆4x2+y2=4的准线方程是(  )
A.y=±
4
3
3
x
B.x=±
4
3
3
y
C.y=±
4
3
3
D.x=
+-
4
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M,若MF1垂直于x轴,则椭圆的离心率为(  )
A.
12-2
3
11
B.2-
3
C.2(2-
3
D.
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线(a>0,b>0)的一条渐近线与圆相交于A,B两点,若|AB|=2,则该双曲线的离心率为(      )
A.8B.2C.3D.

查看答案和解析>>

同步练习册答案