精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=nx-xn,x∈R.其中n∈N.n≥2.
(1)讨论f(x)的单调性;
(2)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)≤g(x);
(3)设n=5,若关于x的方程f(x)=a(a为实数)有两个正实根x1,x2,求证:|x2-x1|<2-$\frac{a}{4}$.

分析 (1)由f(x)=nx-xn,可得f′(x),分n为奇数和偶数两种情况利用导数即可得函数的单调性.
(2)设点P的坐标为(x0,0),则可求x0=${n}^{\frac{1}{n-1}}$,f′(x0)=n-n2,可求g(x)=f′(x0)(x-x0),F′(x)=f′(x)-f′(x0).由f′(x)=-nxn-1+n在(0,+∞)上单调递减,可求F(x)在∈(0,x0)内单调递增,在(x0,+∞)上单调递减,即可得证.
(3)设x1≤x2,设方程g(x)=a的根为x2',由(2)可得x2≤x2'.设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=nx,设方程h(x)=a的根为x1',可得x1'<x1,从而可得:x2-x1<x2'-x1'=$\frac{a}{1-n}$+x0,由n≥2,即2n-1=(1+1)n-1≥1+${C}_{n-1}^{1}$=1+n-1=n,推得:2≥${n}^{\frac{1}{n-1}}$=x0,即可得证.

解答 解:(1)由f(x)=nx-xn,可得f′(x)=n-nxn-1=n(1-xn-1),其中n∈N,且n≥2.
下面分两种情况讨论:
①当n为奇数时,令f′(x)=0,解得x=1,或x=-1,
当x变化时,f′(x),f(x)的变化情况如下表:

 x (-∞,-1) (-1,1) (1,+∞)
 f′(x)-+-
 f(x) 递减 递增递减
所以,f(x)在 (-∞,-1),(1,+∞)上单调递减,在(-1,1)单调递增;
②当n为偶数时,
当 f′(x)>0,即x<1时,函数 f(x)单调递增;
当 f′(x)<0,即x>1时,函数 f(x)单调递减;
所以,f(x)在(-∞,1)单调递增,在(1,+∞)上单调递减;
(2)证明:设点P的坐标为(x0,0),则x0=${n}^{\frac{1}{n-1}}$,f′(x0)=n-n2
曲线y=f(x)在点P处的切线方程为y=f′(x0)(x-x0),
即g(x)=f′(x0)(x-x0),
令F(x)=f(x)-g(x),即F(x)=f(x)-f′(x0)(x-x0),
则F′(x)=f′(x)-f′(x0).
由于f′(x)=-nxn-1+n在(0,+∞)上单调递减,故F′(x)在(0,+∞)上单调递减,
又因为F′(x0)=0,所以当x∈(0,x0)时,F′(x)>0,当x∈(x0,+∞)时,F′(x)<0,
所以F(x)在∈(0,x0)内单调递增,在(x0,+∞)上单调递减,
所以对应任意的正实数x,都有F(x)≤F(x0)=0,
即对于任意的正实数x,都有f(x)≤g(x).
(3)证明:不妨设x1≤x2
由(2)知g(x)=(n-n2)(x-x0),设方程g(x)=a的根为x2',
可得x2'=$\frac{a}{n-{n}^{2}}$+x0,由(Ⅱ)知g(x2)≥f(x2)=a=g(x2'),可得x2≤x2'.
类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=nx,
当x∈(0,+∞),f(x)-h(x)=-xn<0,
即对于任意的x∈(0,+∞),f(x)<h(x),
设方程h(x)=a的根为x1',可得x1'=$\frac{a}{n}$,
因为h(x)=nx在(-∞,+∞)上单调递增,
且h(x1')=a=f(x1)<h(x1),因此x1'<x1
由此可得:x2-x1<x2'-x1'=$\frac{a}{1-n}$+x0
因为n≥2,所以2n-1=(1+1)n-1≥1+${C}_{n-1}^{1}$=1+n-1=n,
故:2≥${n}^{\frac{1}{n-1}}$=x0.则|x2-x1|<2+$\frac{a}{1-n}$,
所以当n=5时,即有|x2-x1|<2-$\frac{a}{4}$.

点评 本小题主要考查导数的运算、导数的几何意义、利用导数研究函数的性质、证明不等式等基础知识和方法,考查分类讨论思想、函数思想和化归思想,考查综合分析问题和解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}\right.$,设m>0,n<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)满足对定义域内的任意x,都有f(x+2)+f(x)<2f(x+1),则函数f(x)可以是(  )
A.f(x)=lnxB.f(x)=x2-2xC.f(x)=exD.f(x)=2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设奇函数f(x)在(0,+∞)上为增函数,且f(3)=0,则不等式$\frac{f(x)-f(-x)}{2}$>0的解集为(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数的导数:
(1)y=$\frac{{x}^{2}-1}{2-x}$;
(2)y=$\frac{sinx}{1+cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过点A(3,1)和B(1,3),圆心在直线2x-y=0上的圆的方程为x2+y2=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC三边为a,b,c三边所对角为A,B,C,满足 acosC+$\frac{1}{2}$c=b.
(1)求角A.
(2)若a=1,求△ABC的周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若质点P的位移S(单位:m)关于运动时间t的函数关系式为:S=4ln(t+1)+t2(t>0),则其瞬时速度的最小值为(4$\sqrt{2}$-2)(m/s)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在五边形ABCDE中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AE}$=$\overrightarrow{b}$,$\overrightarrow{BC}$=$\overrightarrow{c}$,$\overrightarrow{ED}$=$\overrightarrow{d}$,用$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$、$\overrightarrow{d}$表示$\overrightarrow{CD}$.

查看答案和解析>>

同步练习册答案